Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/880
Title: Armature Shape Optimization of an Electromagnetic Launcher Including Contact Resistance
Authors: Ceylan, Doğa
Güdelek, Mehmet Uğur
Keyşan, Ozan
Keywords: air-core pulsed
Rail guns
Rails
Issue Date: Oct-2018
Publisher: Institute of Electrical and Electronics Engineers Inc.
Source: Ceylan, D., Güdelek, M. U., & Keysan, O. (2018). Armature Shape Optimization of an Electromagnetic Launcher Including Contact Resistance. IEEE Transactions on Plasma Science, (99), 1-9.
Abstract: Barrel and pulsed power supply modules are two crucial parts of an electromagnetic launcher (EML), in terms of overall efficiency. One of the most important features of the barrel side is the armature geometry. In this paper, the shape of the armature of an EML with 10-MJ current pulse generator, 1000-kA peak current, and 4.5-ms excitation time is optimized by using independent variables to define the exact geometry of the armature. The main goal is to maximize the muzzle kinetic energy of the projectile with 300-g mass including pressure and contact current constraints. Finite-element method (FEM) is used to calculate the muzzle kinetic energy of the EML for different armature geometries. Genetic algorithm is used as the optimization method. Since the contact resistance between the armature and the rail affects the distribution of contact current density, contact resistance is also modeled in FEM. It is observed that armature shape optimization study increases the muzzle kinetic energy to 596 kJ and the muzzle velocity to 1993 m/s.
URI: https://ieeexplore.ieee.org/document/8393457
https://hdl.handle.net/20.500.11851/880
ISSN: 00933813
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender

SCOPUSTM   
Citations

2
checked on Sep 23, 2022

WEB OF SCIENCETM
Citations

2
checked on Sep 24, 2022

Page view(s)

22
checked on Dec 26, 2022

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.