Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/9225
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYildiz-
dc.contributor.authorBilazeroglu-
dc.contributor.authorMerdan, H.-
dc.date.accessioned2022-12-28T19:37:00Z-
dc.date.available2022-12-28T19:37:00Z-
dc.date.issued2023-
dc.identifier.issn0377-0427-
dc.identifier.urihttps://doi.org/10.1016/j.cam.2022.114910-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/9225-
dc.description.abstractIn this paper, we discuss the complex dynamical behavior of a discrete Lotka–Volterra type predator–prey model including refuge effect. The model considered is obtained from a continuous-time population model by utilizing the forward Euler method. First of all, we nondimensionalize the system to continue the analysis with fewer parameters. And then, we determine the fixed points of the dimensionless system. We investigate the dynamical behavior of the system by performing the local stability analysis for each fixed point, separately. Moreover, we analytically show the existence of flip and Neimark–Sacker bifurcations at the positive fixed point by applying the normal form theory and the center manifold theorem. Bifurcation analyses are carried out by choosing the integral step size as a bifurcation parameter. In addition, we perform numerical simulations to support and extend the analytical results. All these analyses have been done for the models with and without the refuge effect to examine the effect of refuge on the dynamics. We have concluded that the refuge has significant role on the dynamical behavior of a discrete system. Furthermore, numerical simulations underline that the large integral step size causes the chaotic behavior. © 2022 Elsevier B.V.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofJournal of Computational and Applied Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFlip bifurcationen_US
dc.subjectLotka–Volterra type predator–prey systemen_US
dc.subjectNeimark–Sacker bifurcationen_US
dc.subjectRefuge effecten_US
dc.subjectStability analysisen_US
dc.subjectBifurcation (mathematics)en_US
dc.subjectContinuous time systemsen_US
dc.subjectEcosystemsen_US
dc.subjectNumerical modelsen_US
dc.subjectSystem stabilityen_US
dc.subjectDynamical behaviorsen_US
dc.subjectFixed pointsen_US
dc.subjectFlip bifurcationsen_US
dc.subjectIntegral stepsen_US
dc.subjectLotka-Volterraen_US
dc.subjectLotkum–volterrum type predator–prey systemen_US
dc.subjectNeimark-Sacker bifurcationen_US
dc.subjectPredator - Prey systemen_US
dc.subjectRefuge effecten_US
dc.subjectStability analyzeen_US
dc.subjectPredator prey systemsen_US
dc.titleStability and bifurcation analyses of a discrete Lotka–Volterra type predator–prey system with refuge effecten_US
dc.typeArticleen_US
dc.identifier.volume422en_US
dc.identifier.scopus2-s2.0-85141272297en_US
dc.institutionauthorMerdan, Hüseyin-
dc.identifier.doi10.1016/j.cam.2022.114910-
dc.authorscopusid57953386000-
dc.authorscopusid57219806712-
dc.authorscopusid6508264521-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.ozel2022v3_Editen_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairetypeArticle-
Appears in Collections:Matematik Bölümü / Department of Mathematics
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record

CORE Recommender

Page view(s)

64
checked on Mar 27, 2023

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.