Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/985
Title: İnternet servis sağlayıcısı için iptal analizi modeli
Other Titles: Churn prediction for internet service provider
Authors: Özyer, Tansel
Gök, Mehmet
Keywords: Bilgi işleme
Information processing
Hiyerarşik kümeleme
Hierarchical clustering
Kural işleme
Rule processing
Müşteri ilişkileri yönetimi
Customer relationships management
Issue Date: 2014
Publisher: TOBB Ekonomi ve Teknoloji Üniversitesi Fen Bilimleri Enstitüsü
Source: Gök, M.(2014).İnternet servis sağlayıcısı için iptal analizi modeli.Ankara:TOBB ETÜ Fen Bilimleri Enstitüsü.[Yayınlanmamış Yüksek Lisans Tezi]
Abstract: İptal analizi müşterilerin davranış örüntülerinin modellenerek, gelecekte iptal eğilimi gösteren aboneler hakkında öngörülerin belirlendiği müşteri ilişkileri yönetimi sürecidir. Yeni müşterinin kazanımı, mevcut müşterinin sistemde tutulmasından çok daha fazla maliyetlidir. Bu bağlamda iptal analizi ile yapılan tahminler mevcut müşterinin iptale gitmemesi için yapılacak tutundurma faaliyetlerine yardımcı olmaktadır. Günümüzde telekomünikasyon firmaları iptal analizini çeşitli uygulamalarla sistemli bir süreç halinde iyileştirerek sürdürmektedirler. Bu çalışmada da telekomünikasyon sektöründe faaliyet gösteren bir internet servis sağlayıcısının müşteri bilgileri ve davranışları incelenerek gerçekleştirilmiştir. Yapılan literatür araştırmaları sonucunda belirlenen bir bilgi keşif süreci çerçevesinde veri madenciliği uygulamalarının yardımı ile iki fazlı çözüm modeli oluşturulmuştur. Geliştirilen iki fazlı çözüm modeli zaman serisi kümeleme ve sınıflandırma algoritmaları ile birlikte en uygun çalışacak şekilde tasarlanmıştır. Zaman serisi kümeleme uygulaması için k-ortalama ve hiyerarşik kümeleme algoritmaları, sınıflandırma için ise destek vektör makineleri ve özyinelemeli bölümleme algoritmaları karşılaştırmalı olarak performans ölçütleri değerlendirilmiştir.
Churn prediction is a customer relationship process that specifies predictions for customers who are inclined to churn in future through modelling customer behavior patterns. It costs more to acquire a customer than to retain a customer. In this sense, the predictions which are made with churn prediction support promotion activities executed to avoid subscription cancellation of existing customers. Nowadays, telecommunication companies maintain churn prediction with various applications as a systematic process. Also this thesis is written on the basis of customer data and behavior analysis of an internet service provider operating in telecommunication sector. Within the knowledge discovery process framework, explored as a result of realized literature survey, two phased solution model is created with the help of data mining applications. Developed two phased solution model is designed to run effectively with time series clustering and classification algorithms. Performance indicators are evaluated comparatively with respect to k-means, hierarchical clustering algorithms for time series clustering and support vector machines, recursive partitioning for classification algorithms.
URI: https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
https://hdl.handle.net/20.500.11851/985
Appears in Collections:Bilgisayar Mühendisliği Yüksek Lisans Tezleri / Computer Engineering Master Theses

Files in This Item:
File Description SizeFormat 
378494.pdfMehmet Gök_tez1.55 MBAdobe PDFThumbnail
View/Open
Show full item record

CORE Recommender

Page view(s)

6
checked on Feb 6, 2023

Download(s)

8
checked on Feb 6, 2023

Google ScholarTM

Check


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.