Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/9919
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDo?ru, O.-
dc.contributor.authorDuman, O.-
dc.date.accessioned2022-12-25T20:53:00Z-
dc.date.available2022-12-25T20:53:00Z-
dc.date.issued2006-
dc.identifier.issn0033-3883-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/9919-
dc.description.abstractIn this paper, we introduce a generalization of the Meyer-König and Zeller operators based on q-integers and get a Bohman-Korovkin type approximation theorem of these operators via A-statistical convergence. We also compute rate of A-statistical convergence of these q-type operators by means of the modulus of continuity and Lipschitz type maximal function, respectively. The second purpose of this note is to obtain explicit formulas for the monomials (t/1-t)v ? = 0,1,2 of q-type generalization of Meyer-König and Zeller operators.en_US
dc.language.isoenen_US
dc.relation.ispartofPublicationes Mathematicaeen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectA-statistical convergenceen_US
dc.subjectLipschitz type maximal functionen_US
dc.subjectModulus of continuityen_US
dc.subjectPositive linear operatorsen_US
dc.subjectq-integersen_US
dc.subjectThe Bohman-Korovkin type theoremen_US
dc.titleStatistical approximation of Meyer-König and Zeller operators based on q-integersen_US
dc.typeArticleen_US
dc.departmentESTÜen_US
dc.identifier.volume68en_US
dc.identifier.issue1.Şuben_US
dc.identifier.startpage199en_US
dc.identifier.endpage214en_US
dc.identifier.scopus2-s2.0-33646064729en_US
dc.institutionauthor[Belirlenecek]-
dc.authorscopusid56253042700-
dc.authorscopusid9943532600-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdiziniden_US]
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairetypeArticle-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record

CORE Recommender

Page view(s)

2
checked on Mar 27, 2023

Google ScholarTM

Check


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.