On the Moments of a Semi-Markovian Random Walk With Gaussian Distribution of Summands

dc.contributor.author Aliyev, Rovshan
dc.contributor.author Khaniyev, Tahir
dc.date.accessioned 2019-07-03T14:44:46Z
dc.date.available 2019-07-03T14:44:46Z
dc.date.issued 2014-01
dc.description.abstract In this article, a semi-Markovian random walk with delay and a discrete interference of chance (X(t)) is considered. It is assumed that the random variables (n), n=1, 2,..., which describe the discrete interference of chance form an ergodic Markov chain with ergodic distribution which is a gamma distribution with parameters (, ). Under this assumption, the asymptotic expansions for the first four moments of the ergodic distribution of the process X(t) are derived, as 0. Moreover, by using the Riemann zeta-function, the coefficients of these asymptotic expansions are expressed by means of numerical characteristics of the summands, when the process considered is a semi-Markovian Gaussian random walk with small drift . en_US
dc.description.abstract [Aliyev, Rovshan] Baku State Univ, Dept Probabil Theory & Math Stat, Baku, Azerbaijan; [Khaniyev, Tahir] TOBB Univ Econ & Technol, Dept Ind Engn, Ankara, Turkey; [Aliyev, Rovshan; Khaniyev, Tahir] Azerbaijan Natl Acad Sci, Inst Cybernet, Baku, Azerbaijan en_US
dc.identifier.citation Aliyev, R., & Khaniyev, T. (2014). On the moments of a semi-Markovian random walk with Gaussian distribution of summands. Communications in Statistics-Theory and Methods, 43(1), 90-104. en_US
dc.identifier.doi 10.1080/03610926.2012.655877
dc.identifier.issn 0361-0926
dc.identifier.issn 1532-415X
dc.identifier.scopus 2-s2.0-84889649483
dc.identifier.uri https://doi.org/10.1080/03610926.2012.655877
dc.identifier.uri https://hdl.handle.net/20.500.11851/1583
dc.language.iso en en_US
dc.publisher Taylor & Francis Inc en_US
dc.relation.ispartof Communications In Statistics-Theory And Methods en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Asymptotic expansion en_US
dc.subject Discrete interference of chance en_US
dc.subject Ergodic distribution en_US
dc.subject Gaussian distribution en_US
dc.subject Moments en_US
dc.subject Riemann zeta-function en_US
dc.subject Semi-Markovian random walk en_US
dc.title On the Moments of a Semi-Markovian Random Walk With Gaussian Distribution of Summands en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id 0000-0003-1974-0140
gdc.author.institutional Hanalioğlu (Khaniyev), Tahir
gdc.author.scopusid 7801652544
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.description.department Faculties, Faculty of Engineering, Department of Industrial Engineering en_US
gdc.description.department Fakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü en_US
gdc.description.endpage 104 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 90 en_US
gdc.description.volume 43 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W2010785304
gdc.identifier.wos WOS:000327587100006
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 3.4493457E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Moments
gdc.oaire.keywords Gaussian distribution
gdc.oaire.keywords Asymptotic expansion
gdc.oaire.keywords Discrete interference of chance
gdc.oaire.keywords Ergodic distribution
gdc.oaire.keywords Semi-Markovian random walk
gdc.oaire.keywords Riemann zeta-function
gdc.oaire.popularity 4.1071373E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 0.85267857
gdc.openalex.normalizedpercentile 0.75
gdc.opencitations.count 6
gdc.plumx.crossrefcites 3
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 10
gdc.scopus.citedcount 10
gdc.wos.citedcount 10
relation.isAuthorOfPublication 76002088-0736-4f2e-bb0d-fee17e84312f
relation.isAuthorOfPublication.latestForDiscovery 76002088-0736-4f2e-bb0d-fee17e84312f
relation.isOrgUnitOfPublication 9ee005e2-c362-4291-8ed6-a20452f26045
relation.isOrgUnitOfPublication a9abd75e-3cd8-44b3-a2bb-d7c72a7e2f1d
relation.isOrgUnitOfPublication 80088808-d92c-4251-ad3e-435c98e0ac85
relation.isOrgUnitOfPublication.latestForDiscovery 9ee005e2-c362-4291-8ed6-a20452f26045

Files