Discrete Interval Type 2 Fuzzy System Models Using Uncertainty in Learning Parameters
| dc.contributor.author | Uncu, Özge | |
| dc.contributor.author | Türkşen, İsmail Burhan | |
| dc.date.accessioned | 2021-09-11T15:37:17Z | |
| dc.date.available | 2021-09-11T15:37:17Z | |
| dc.date.issued | 2007 | |
| dc.description.abstract | -Fuzzy system modeling (FSM) is one of the most prominent tools that can be used to identify the behavior of highly nonlinear systems with uncertainty. Conventional FSM techniques utilize type 1 fuzzy sets in order to capture the uncertainty in the system. However, since type 1 fuzzy sets express the belongingness of a crisp value x' of a base variable x in a fuzzy set A by a crisp membership value mu(A)(x'), they cannot fully capture the uncertainties due to imprecision in identifying membership functions. Higher types of fuzzy sets can be a remedy to address this issue. Since, the computational complexity of operations on fuzzy sets are increasing with the increasing type of the fuzzy set, the use-of type 2 fuzzy sets and linguistic logical connectives drew a considerable amount of attention in the realm of fuzzy system modeling in the last two decades. In this paper, we propose a black-box methodology that can identify robust type 2. Takagi-Sugeno, Mizumoto and Linguistic fuzzy system models with high predictive power. One of the essential problems of type 2 fuzzy system models is computational complexity. In order to remedy this problem, discrete interval valued type 2 fuzzy system models are proposed with type reduction. In the proposed fuzzy system modeling methods, fuzzy C-means (FCM) clustering algorithm is used in order to identify the system structure. The proposed discrete interval valued type 2 fuzzy system models are generated by a learning parameter of FCM, known as the level of membership, and its variation over a specific set of values which generate the uncertainty associated with the system structure. | en_US |
| dc.identifier.doi | 10.1109/TFUZZ.2006.889765 | |
| dc.identifier.issn | 1063-6706 | |
| dc.identifier.issn | 1941-0034 | |
| dc.identifier.scopus | 2-s2.0-33947365579 | |
| dc.identifier.uri | https://doi.org/10.1109/TFUZZ.2006.889765 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.11851/6544 | |
| dc.language.iso | en | en_US |
| dc.publisher | IEEE-Inst Electrical Electronics Engineers Inc | en_US |
| dc.relation.ispartof | IEEE Transactions On Fuzzy Systems | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | fuzzy system models | en_US |
| dc.subject | fuzzy inference systems | en_US |
| dc.subject | fuzzy clustering | en_US |
| dc.subject | type 2 fuzzy system models | en_US |
| dc.subject | level of fuzziness | en_US |
| dc.title | Discrete Interval Type 2 Fuzzy System Models Using Uncertainty in Learning Parameters | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Türkşen, İsmail Burhan | |
| gdc.bip.impulseclass | C3 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.description.department | Faculties, Faculty of Engineering, Department of Industrial Engineering | en_US |
| gdc.description.department | Fakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
| gdc.description.departmenttemp | Univ Toronto, Toronto, ON M5S 3G8, Canada; TOBB Econ & Technol Univ, Dept Ind Engn, TR-06560 Ankara, Turkey; | en_US |
| gdc.description.endpage | 106 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 90 | en_US |
| gdc.description.volume | 15 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2039130949 | |
| gdc.identifier.wos | WOS:000244803400008 | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 33.0 | |
| gdc.oaire.influence | 1.070351E-8 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | fuzzy system models | |
| gdc.oaire.keywords | level of fuzziness | |
| gdc.oaire.keywords | fuzzy inference systems | |
| gdc.oaire.keywords | fuzzy clustering | |
| gdc.oaire.keywords | type 2 fuzzy system models | |
| gdc.oaire.popularity | 1.2972245E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.fwci | 15.51559 | |
| gdc.openalex.normalizedpercentile | 0.99 | |
| gdc.openalex.toppercent | TOP 1% | |
| gdc.opencitations.count | 95 | |
| gdc.plumx.crossrefcites | 88 | |
| gdc.plumx.mendeley | 40 | |
| gdc.plumx.scopuscites | 103 | |
| gdc.scopus.citedcount | 103 | |
| gdc.wos.citedcount | 88 | |
| relation.isAuthorOfPublication | dee0d74d-792d-4528-af1a-c077967499ac | |
| relation.isAuthorOfPublication.latestForDiscovery | dee0d74d-792d-4528-af1a-c077967499ac | |
| relation.isOrgUnitOfPublication | 9ee005e2-c362-4291-8ed6-a20452f26045 | |
| relation.isOrgUnitOfPublication | a9abd75e-3cd8-44b3-a2bb-d7c72a7e2f1d | |
| relation.isOrgUnitOfPublication | 80088808-d92c-4251-ad3e-435c98e0ac85 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 9ee005e2-c362-4291-8ed6-a20452f26045 |
