Discrete Interval Type 2 Fuzzy System Models Using Uncertainty in Learning Parameters

dc.contributor.author Uncu, Özge
dc.contributor.author Türkşen, İsmail Burhan
dc.date.accessioned 2021-09-11T15:37:17Z
dc.date.available 2021-09-11T15:37:17Z
dc.date.issued 2007
dc.description.abstract -Fuzzy system modeling (FSM) is one of the most prominent tools that can be used to identify the behavior of highly nonlinear systems with uncertainty. Conventional FSM techniques utilize type 1 fuzzy sets in order to capture the uncertainty in the system. However, since type 1 fuzzy sets express the belongingness of a crisp value x' of a base variable x in a fuzzy set A by a crisp membership value mu(A)(x'), they cannot fully capture the uncertainties due to imprecision in identifying membership functions. Higher types of fuzzy sets can be a remedy to address this issue. Since, the computational complexity of operations on fuzzy sets are increasing with the increasing type of the fuzzy set, the use-of type 2 fuzzy sets and linguistic logical connectives drew a considerable amount of attention in the realm of fuzzy system modeling in the last two decades. In this paper, we propose a black-box methodology that can identify robust type 2. Takagi-Sugeno, Mizumoto and Linguistic fuzzy system models with high predictive power. One of the essential problems of type 2 fuzzy system models is computational complexity. In order to remedy this problem, discrete interval valued type 2 fuzzy system models are proposed with type reduction. In the proposed fuzzy system modeling methods, fuzzy C-means (FCM) clustering algorithm is used in order to identify the system structure. The proposed discrete interval valued type 2 fuzzy system models are generated by a learning parameter of FCM, known as the level of membership, and its variation over a specific set of values which generate the uncertainty associated with the system structure. en_US
dc.identifier.doi 10.1109/TFUZZ.2006.889765
dc.identifier.issn 1063-6706
dc.identifier.issn 1941-0034
dc.identifier.scopus 2-s2.0-33947365579
dc.identifier.uri https://doi.org/10.1109/TFUZZ.2006.889765
dc.identifier.uri https://hdl.handle.net/20.500.11851/6544
dc.language.iso en en_US
dc.publisher IEEE-Inst Electrical Electronics Engineers Inc en_US
dc.relation.ispartof IEEE Transactions On Fuzzy Systems en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject fuzzy system models en_US
dc.subject fuzzy inference systems en_US
dc.subject fuzzy clustering en_US
dc.subject type 2 fuzzy system models en_US
dc.subject level of fuzziness en_US
dc.title Discrete Interval Type 2 Fuzzy System Models Using Uncertainty in Learning Parameters en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Türkşen, İsmail Burhan
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.description.department Faculties, Faculty of Engineering, Department of Industrial Engineering en_US
gdc.description.department Fakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü en_US
gdc.description.departmenttemp Univ Toronto, Toronto, ON M5S 3G8, Canada; TOBB Econ & Technol Univ, Dept Ind Engn, TR-06560 Ankara, Turkey; en_US
gdc.description.endpage 106 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 90 en_US
gdc.description.volume 15 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2039130949
gdc.identifier.wos WOS:000244803400008
gdc.oaire.diamondjournal false
gdc.oaire.impulse 33.0
gdc.oaire.influence 1.070351E-8
gdc.oaire.isgreen false
gdc.oaire.keywords fuzzy system models
gdc.oaire.keywords level of fuzziness
gdc.oaire.keywords fuzzy inference systems
gdc.oaire.keywords fuzzy clustering
gdc.oaire.keywords type 2 fuzzy system models
gdc.oaire.popularity 1.2972245E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 15.51559
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 95
gdc.plumx.crossrefcites 88
gdc.plumx.mendeley 40
gdc.plumx.scopuscites 103
gdc.scopus.citedcount 103
gdc.wos.citedcount 88
relation.isAuthorOfPublication dee0d74d-792d-4528-af1a-c077967499ac
relation.isAuthorOfPublication.latestForDiscovery dee0d74d-792d-4528-af1a-c077967499ac
relation.isOrgUnitOfPublication 9ee005e2-c362-4291-8ed6-a20452f26045
relation.isOrgUnitOfPublication a9abd75e-3cd8-44b3-a2bb-d7c72a7e2f1d
relation.isOrgUnitOfPublication 80088808-d92c-4251-ad3e-435c98e0ac85
relation.isOrgUnitOfPublication.latestForDiscovery 9ee005e2-c362-4291-8ed6-a20452f26045

Files