Noise Cancellation in Doppler Ultrasound Signals With Adaptive Neuro-Fuzzy Inference System

dc.contributor.author Übeyli, Elif Derya
dc.date.accessioned 2021-09-11T15:55:47Z
dc.date.available 2021-09-11T15:55:47Z
dc.date.issued 2010
dc.description.abstract Adaptive noise cancellation using adaptive neuro-fuzzy inference system (ANFIS) is proposed for denoising Doppler ultrasound signals. Doppler ultrasound technology has been widely used in the clinic to diagnose vascular diseases for its noninvasive advantage. Therefore, the improvement in the flow velocity estimation performed by Doppler ultrasound blood measurement systems is important in vascular diseases diagnosis. The Doppler ultrasound signals were modeled as the summation of the true velocity signal, a wall motion signal, a clutter signal, and a random noise component. The ophthalmic arterial (OA) Doppler signals recorded from the healthy subjects and subjects suffering from the OA stenosis were used as the test sources. The signal-to-noise ratio (SNR) improvements were studied for the OA Doppler signals. Based on the results (SNR improvements and root mean square - RMS error) of the experiments, it was concluded that the performance of the proposed method is higher than that of the existing methods in the literature for denoising the Doppler ultrasound signals. (C) 2009 Elsevier Inc. All rights reserved. en_US
dc.identifier.doi 10.1016/j.dsp.2009.05.002
dc.identifier.issn 1051-2004
dc.identifier.issn 1095-4333
dc.identifier.scopus 2-s2.0-71649113979
dc.identifier.uri https://doi.org/10.1016/j.dsp.2009.05.002
dc.identifier.uri https://hdl.handle.net/20.500.11851/7137
dc.language.iso en en_US
dc.publisher Academic Press Inc Elsevier Science en_US
dc.relation.ispartof Digital Signal Processing en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Adaptive noise cancellation en_US
dc.subject Adaptive neuro-fuzzy inference system (ANFIS) en_US
dc.subject Signal-to-noise ratio (SNR) en_US
dc.subject Doppler ultrasound signals en_US
dc.title Noise Cancellation in Doppler Ultrasound Signals With Adaptive Neuro-Fuzzy Inference System en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Übeyli, Elif Derya
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.description.department Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering en_US
gdc.description.department Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü en_US
gdc.description.departmenttemp [Ubeyli, Elif Derya] TOBB Ekon, Fac Engn, Dept Elect & Elect Engn, TR-06530 Ankara, Turkey; [Ubeyli, Elif Derya] Teknol Univ, TR-06530 Ankara, Turkey; en_US
gdc.description.endpage 76 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 63 en_US
gdc.description.volume 20 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W1971117321
gdc.identifier.wos WOS:000272437900007
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 3.0436869E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Adaptive noise cancellation
gdc.oaire.keywords Signal-to-noise ratio (SNR)
gdc.oaire.keywords Doppler ultrasound signals
gdc.oaire.keywords Adaptive neuro-fuzzy inference system (ANFIS)
gdc.oaire.popularity 3.7431818E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.08
gdc.opencitations.count 8
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 10
gdc.plumx.scopuscites 9
gdc.scopus.citedcount 9
gdc.wos.citedcount 11
relation.isOrgUnitOfPublication 80088808-d92c-4251-ad3e-435c98e0ac85
relation.isOrgUnitOfPublication.latestForDiscovery 80088808-d92c-4251-ad3e-435c98e0ac85

Files