Solar-Driven Calcination of Clays for Sustainable Zeolite Production: Co2 Capture Performance at Ambient Conditions

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Sci Ltd

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

This study presents the environmentally sustainable synthesis of zeolites from solar-calcined kaolin and halloysite, emphasizing their application in CO2 capture due to their distinctive porous structures and chemical attributes. Expanding upon prior research that utilized solar energy for kaolin calcination, we now explore halloysite as an alternative clay mineral for zeolite production and CO2 capture. Employing a solar simulator, halloysite was calcined at temperatures ranging from 700 to 1000 degrees C, resulting in the synthesis of zeolites 4A and 13X via hydrothermal methods. The synthesized zeolites were characterized using X-ray diffraction (XRD), low angle XRD (LA-XRD), transmission electron microscopy (TEM), and field-emission scanning electron microscopy (FE-SEM), and Brunauer-Emmett-Teller (BET) surface area measurements. Notably, the presence of Al-Si spinel, which crystallizes at elevated solar calcination temperatures, persisted within the zeolite 13X matrix, inducing a secondary mesoporous phase. The observed hysteresis in 13X samples, rather than confirming the mesoporous character of zeolite 13X, indicates a tandem effect of mesoporous Al-Si spinel with microporous zeolite 13X, exemplifying systems known as micro/mesoporous zeolitic composites (MZCs). The correlation obtained between the interplanar distances calculated from LA-XRD and pore size distributions acquired from the BJH desorption branches highlights LA-XRD as an alternative analysis method for assessing mesoporosity. While the microporosity of Al-Si spinel possessing 13X samples positively correlates with CO2 capture performance, mesoporosity appears to have minimal impact. Among the zeolites synthesized using solar energy, zeolite 4A (LTA) demonstrates superior CO2 capture capability, achieving an adsorption capacity of 2.15 mmol/g at 25 degrees C and 1 bar. This study highlights the potential of solar energy in producing eco-friendly zeolites from kaolin and halloysite for improved CO2 capture, advancing sustainable environmental solutions.

Description

Keywords

Kaolin, Halloysite, Solar calcination, CO 2 capture, Green zeolite, Lta Zeolites, Intracrystalline Mesoporosity, Spinel Phase, Adsorption, Size, 13x, Crystallization, Porosity, Solar calcination, Spinel Phase, CO 2 capture, Halloysite, 13x, CO2 capture, Lta Zeolites, Intracrystalline Mesoporosity, Size, Adsorption, Kaolin, Crystallization, Porosity, Green zeolite

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Journal of Cleaner Production

Volume

477

Issue

Start Page

143838

End Page

PlumX Metrics
Citations

Scopus : 10

Captures

Mendeley Readers : 19

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
4.66271871

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo