Adsorption of Habitat and Industry-Relevant Molecules on the Mosi2n4 Monolayer

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 1%
Influence
Top 10%
Popularity
Top 1%

Research Projects

Journal Issue

Abstract

The adsorption of various environmental gas molecules, including H-2, N-2, CO, CO2, O-2, NO, NO2, SO2 H2O, H2S, NH3 and CH4, on the surface of the recently synthesized two dimensional MoSi2N4 (MSN) monolayer has been investigated by means of spin-polarized first-principles calculations. The most stable adsorption configuration, adsorption energy, and charge transfer have been computed. Due to the weak interaction between molecules studied with the MSN monolayer surface, the adsorption energy is small and does not yield any significant distortion of the MSN lattice, i.e., the interaction between the molecules and MSN monolayer surface is physisorption. We find that all molecules are physisorbed on the MSM surface with small charge transfer, acting as either charge acceptors or donors. The MSN monolayer is a semiconductor with an indirect band gap of 1.79 eV. Our theoretical estimations reveal that upon adsorption of H-2, N-2, CO, CO2, NO, H2O, H2S, NH3 and CH4 molecules, the semiconducting character of MSN monolayer is preserved and the band gap value is decreased to similar to 1.5 eV. However, the electronic properties of the MSN monolayer can be significantly altered by adsorption of O-2, NO and SO2, and a spin polarization with magnetic moments of 2, 1, 2 mu(B), respectively, can be introduced. Furthermore, we demonstrate that the band gap and the magnetic moment of adsorbed MSN monolayer can be significantly modulated by the concentration of NO and SO2 molecules. As the concentration of NO2 molecule increases, the magnetic moment increase from 1 mu(B) to 2 and 3 mu(B). In the case of the SO2 molecule with increasing of concentration, the band gap decreases from 1.2 eV to 1.1 and 0.9 eV. Obviously, our theoretical studies indicate that MSN monolayer-based sensor has a high application potential for O-2, NO, NO2 and SO2 detection.

Description

Keywords

MoSi2N4 monolayer, Adsorption of molecules, Electronic and magnetic properties, Density functional theory, Adsorption of molecules, Electronic and magnetic properties, Density functional theory, MoSi2N4 monolayer

Turkish CoHE Thesis Center URL

Fields of Science

02 engineering and technology, 0210 nano-technology, 01 natural sciences, 0104 chemical sciences

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
62

Source

Applied Surface Science

Volume

564

Issue

Start Page

150326

End Page

PlumX Metrics
Citations

CrossRef : 76

Scopus : 74

Captures

Mendeley Readers : 21

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
5.69922436

Sustainable Development Goals

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo