Periodicity Detection in Turkish Stock Market

dc.contributor.author Kurtulmaz, Ekim
dc.contributor.author Aziz, R.
dc.contributor.author Uçar, U.
dc.contributor.author Özyer, Tansel
dc.contributor.author Alhajj, Reda
dc.date.accessioned 2019-07-10T14:42:47Z
dc.date.available 2019-07-10T14:42:47Z
dc.date.issued 2018-07
dc.description 26th IEEE Signal Processing and Communications Applications Conference (2018 : Izmir; Turkey) en_US
dc.description.abstract This paper provides a periodicity detection sample of the Turkish Stock Market using data mining concepts and techniques. The extraction of periodic patterns from the time series databases is a captivating area in data mining such that it has impulse to forecast and predict the behavior of time series data in the future. Given data from on a multilevel space from different industries, we find repeating trends and frequent patterns using correlation analysis and fourier spectral evaluation. Using the projection of transformed time-series data of the feature space, we indicate long-term movements, cyclic moves, seasonal variations, and random moves. Finally, we will present a simple trend analysis for time-series forecasting the periodicity. © 2018 IEEE. en_US
dc.description.abstract Bu makalede, veri madenciligi teknikleri kullanılarak Türk Borsası’nda işlem gören hisse senetlerinin periyodiklik analizi yapılmıştır. Zaman serisi verilerindeki periyodik örüntülerin incelenmesi ilgi gören bir veri madenciligi problemidir, ve gelecek tahmini yapmak için kullanılabilir. Farklı sektörlerden hisse senetlerinin incelendigi bu çalışmada, tekrar eden yönelimler ve sık karşılaşılan örüntüler, ilinti analizi ve Fourier Dönüşümü yöntemleriyle tespit edilmiştir. Zaman serisinin farklı boyutlara dönüştürülmesiyle elde edilen veri, uzun süreli hareketleri, dönemsel hareketleri, periyodik hareketleri ve rasgele hareketleri saptamamızı saglamıştır. Son olarak ise, periyodiklik bilgisi kullanılarak basit bir yönelim tahmini yapılmıştır. en_US
dc.description.sponsorship Aselsan,et al.,Huawei,IEEE Signal Processing Society,IEEE Turkey Section,Netas en_US
dc.identifier.citation Kurtulmaz, E., Aziz, R., Uçar, U., Özyer, T., & Alhajj, R. (2018, May). Periodicity detection in turkish stock market. In 2018 26th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE. en_US
dc.identifier.doi 10.1109/SIU.2018.8404289
dc.identifier.isbn 978-153861501-0
dc.identifier.scopus 2-s2.0-85050794512
dc.identifier.uri https://ieeexplore.ieee.org/document/8404289
dc.identifier.uri https://hdl.handle.net/20.500.11851/2034
dc.language.iso tr en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 26th IEEE Signal Processing and Communications Applications Conference en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Time series en_US
dc.subject Data mining en_US
dc.subject series classification en_US
dc.subject Periyodiklik Kestirimi en_US
dc.subject Veri Madenciliği en_US
dc.subject Örüntü Tanıma en_US
dc.title Periodicity Detection in Turkish Stock Market en_US
dc.title.alternative Türk Borsasında Periyodiklik Kestirimi en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Özyer, Tansel
gdc.author.scopusid 8914139000
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.description.department Faculties, Faculty of Engineering, Department of Computer Engineering en_US
gdc.description.department Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 4 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W2841973364
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.583162E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Veri Madenciliği
gdc.oaire.keywords Time series
gdc.oaire.keywords Örüntü Tanıma
gdc.oaire.keywords series classification
gdc.oaire.keywords Data mining
gdc.oaire.keywords Periyodiklik Kestirimi
gdc.oaire.popularity 1.1210457E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.07
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
relation.isAuthorOfPublication a48855a8-0e42-4258-96b6-01b33ad142aa
relation.isAuthorOfPublication.latestForDiscovery a48855a8-0e42-4258-96b6-01b33ad142aa
relation.isOrgUnitOfPublication 5a69b6f6-7c1e-4d24-abcf-a1cb410e6147
relation.isOrgUnitOfPublication a9abd75e-3cd8-44b3-a2bb-d7c72a7e2f1d
relation.isOrgUnitOfPublication 80088808-d92c-4251-ad3e-435c98e0ac85
relation.isOrgUnitOfPublication.latestForDiscovery 5a69b6f6-7c1e-4d24-abcf-a1cb410e6147

Files