Intelligent Chatter Detection in Milling Using Vibration Data Features and Deep Multi-Layer Perceptron

dc.contributor.author Şener, Batıhan
dc.contributor.author Serin, Gökberk
dc.contributor.author Güdelek, M. Uğur
dc.contributor.author Özbayoğlu, Ahmet Murat
dc.contributor.author Ünver, Hakkı Özgür
dc.date.accessioned 2021-09-11T15:44:13Z
dc.date.available 2021-09-11T15:44:13Z
dc.date.issued 2020
dc.description.abstract Milling is a highly crucial machining process in the modern industry. With the recent trends of Industry 4.0, it is becoming more common to implement Artificial Intelligence (AI) methods to increase the performance of milling processes. As a significant limitation for the efficiency of the machining processes, chatter detection, and avoidance are critical. In this paper, a chatter detection method based on vibration data features for the slot milling process is proposed. This method benefits from a deep learning method, Deep Multi-Layer Perceptron (DMLP). Vibration data was acquired by attaching an accelerometer to the spindle housing during slot milling operations. Fast Fouries Transform (FFT) was applied to time-domain vibratory data. Frequency domain data achieved by FFT was investigated for labeling the occurrence of chatter. These labels were used to train the DMLP algorithm. Time-domain signal features such as root mean square, clearance factor, skewness, crest factor, and shape factor were selected as inputs for the chatter detection algorithm. Finally, validation cuttings were performed for verifying the results of the DMLP algorithm. The results prove that time-domain features can provide enough information about the chatter occurrence in slot milling operations, and the DMLP algorithm proposed in this research can successfully detect the chatter occurrence. en_US
dc.description.sponsorship IEEE, IEEE Comp Soc, IBM, Ankura en_US
dc.description.sponsorship TUBITAK (The Scientific and Technological Research Council of Turkey)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [118M414] en_US
dc.description.sponsorship We are grateful to Prof. Dr. Yusuf Altintas for providing us CutPROT software and technical support of MAL Inc. team, throughout this study. This study is funded by TUBITAK (The Scientific and Technological Research Council of Turkey) through project grant no. 118M414. en_US
dc.identifier.citation 8th IEEE International Conference on Big Data (Big Data) -- DEC 10-13, 2020 -- ELECTR NETWORK en_US
dc.identifier.doi 10.1109/BigData50022.2020.9378223
dc.identifier.isbn 978-1-7281-6251-5
dc.identifier.issn 2639-1589
dc.identifier.scopus 2-s2.0-85103844256
dc.identifier.uri https://doi.org/10.1109/BigData50022.2020.9378223
dc.identifier.uri https://hdl.handle.net/20.500.11851/6910
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation 8th IEEE International Conference on Big Data (Big Data) en_US
dc.relation.ispartof 2020 IEEE International Conference On Big Data (Big Data) en_US
dc.relation.ispartofseries IEEE International Conference on Big Data
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject deep learning en_US
dc.subject chatter detection en_US
dc.subject deep multi-layer perceptron en_US
dc.subject milling en_US
dc.subject industry 4.0 en_US
dc.title Intelligent Chatter Detection in Milling Using Vibration Data Features and Deep Multi-Layer Perceptron en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Ünver, Hakkı Özgür
gdc.author.institutional Özbayoğlu, Ahmet Murat
gdc.author.institutional Ünver, Hakkı Özgür
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.description.department Faculties, Faculty of Engineering, Department of Computer Engineering en_US
gdc.description.department Faculties, Faculty of Engineering, Department of Mechanical Engineering en_US
gdc.description.department Faculties, Faculty of Engineering, Department of Artificial Intelligence Engineering en_US
gdc.description.department Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.department Fakülteler, Mühendislik Fakültesi, Makine Mühendisliği Bölümü en_US
gdc.description.department Fakülteler, Mühendislik Fakültesi, Yapay Zeka Mühendisliği Bölümü en_US
gdc.description.departmenttemp [Sener, Batihan; Serin, Gokberk; Unver, Hakki Ozgur] TOBB Univ Econ & Technol, Dept Mech Engn, Ankara, Turkey; [Gudelek, M. Ugur] TOBB Univ Econ & Technol, Dept Comp Engn, Ankara, Turkey; [Ozbayoglu, A. Murat] TOBB Univ Econ & Technol, Dept Artificial Intelligence Engn, Ankara, Turkey; en_US
gdc.description.endpage 4768 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 4759 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W3138196982
gdc.identifier.wos WOS:000662554704103
gdc.oaire.diamondjournal false
gdc.oaire.impulse 7.0
gdc.oaire.influence 2.8805696E-9
gdc.oaire.isgreen false
gdc.oaire.keywords deep multi-layer perceptron
gdc.oaire.keywords chatter detection
gdc.oaire.keywords milling
gdc.oaire.keywords deep learning
gdc.oaire.keywords industry 4.0
gdc.oaire.popularity 7.3650455E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0209 industrial biotechnology
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 1.1459592
gdc.openalex.normalizedpercentile 0.75
gdc.opencitations.count 7
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 30
gdc.plumx.scopuscites 16
gdc.scopus.citedcount 16
gdc.wos.citedcount 12
relation.isAuthorOfPublication f180187a-770e-41dd-8f1c-46372f40066e
relation.isAuthorOfPublication 3e1ed8f4-6f3d-4a23-9ca1-990af820a17e
relation.isAuthorOfPublication.latestForDiscovery f180187a-770e-41dd-8f1c-46372f40066e
relation.isOrgUnitOfPublication 5a69b6f6-7c1e-4d24-abcf-a1cb410e6147
relation.isOrgUnitOfPublication b326b4ee-7fc2-4f63-afef-22129afbb77e
relation.isOrgUnitOfPublication a9abd75e-3cd8-44b3-a2bb-d7c72a7e2f1d
relation.isOrgUnitOfPublication 80088808-d92c-4251-ad3e-435c98e0ac85
relation.isOrgUnitOfPublication.latestForDiscovery 5a69b6f6-7c1e-4d24-abcf-a1cb410e6147

Files