Inverted Configuration of Cu(In,Ga)S2/In2S3on 3D-ZnO/ZnSnO3Bilayer System for Highly Efficient Photoelectrochemical Water Splitting

dc.contributor.author Altaf, Çiğdem Tuc
dc.contributor.author Şahsuvar, N. S.
dc.contributor.author Abdullayeva, N.
dc.contributor.author Coşkun, O.
dc.contributor.author Kumtepe, A.
dc.contributor.author Karagöz, E.
dc.contributor.author Sankır, Mehmet
dc.contributor.author Demirci Sankır, Nurdan
dc.date.accessioned 2021-01-27T13:24:31Z
dc.date.available 2021-01-27T13:24:31Z
dc.date.issued 2020-09
dc.description.abstract Introducing a zinc stannate, ZnSnO3 (ZTO), layer on hydrothermally grown 3D-zinc oxide (ZnO) nanosheet thin films has been proven to have a quenching effect on the photoluminescence emissions, indicating very slow recombination of photoinduced electron-hole pairs in photoelectrochemical water splitting (PEC) reactions. Motivated by this, the ZnO/ZTO bilayer system has been used as the electron transport layer for copper indium gallium sulfide (CIGS)-based photoelectrodes in PEC applications. Furthermore, the poor photoresistivity of CIGS has been improved via indium sulfide (In2S3) deposition. Consequently, the photoelectrode obtained from the inverted configuration, ZnO/ZTO/CIGS/In2S3, has generated a photocurrent density of 6.4 mA cm-2 at 0.4 V (vs Ag/AgCl), exceeding the performance of ZnO NS/CIGS/In2S3 photoelectrodes by three folds. The highest ABPE and IPCE efficiencies have been calculated as 4.2% and 57%, respectively. More importantly, two cost-effective nonvacuum techniques for large-scale thin film fabrications such as chemical bath deposition (CBD) and ultrasonic spray pyrolysis (USP) methods have been adopted to acquire photoelectrodes with inverted configurations providing an advantageous approach for low-cost photoelectrode design for sustainable energy production. Copyright © 2020 American Chemical Society. en_US
dc.identifier.citation Tuc Altaf, C., Sahsuvar, N. S., Abdullayeva, N., Coskun, O., Kumtepe, A., Karagoz, E., ... and Demirci Sankir, N. (2020). Inverted Configuration of Cu (In, Ga) S2/In2S3 on 3D-ZnO/ZnSnO3 Bilayer System for Highly Efficient Photoelectrochemical Water Splitting. ACS Sustainable Chemistry and Engineering, 8(40), 15209-15222. en_US
dc.identifier.doi 10.1021/acssuschemeng.0c04846
dc.identifier.issn 21680485
dc.identifier.issn 2168-0485
dc.identifier.scopus 2-s2.0-85094929763
dc.identifier.uri https://hdl.handle.net/20.500.11851/4105
dc.identifier.uri https://pubs.acs.org/doi/10.1021/acssuschemeng.0c04846
dc.language.iso en en_US
dc.publisher American Chemical Society en_US
dc.relation.ispartof ACS Sustainable Chemistry and Engineering en_US
dc.relation.tubitak info:eu-repo/grantAgreement/TÜBİTAK/MAG/315M348
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject 3D-ZnO en_US
dc.subject Copper indium gallium sulfide en_US
dc.subject Indium sulfide en_US
dc.subject Photoelectrochemical water splitting en_US
dc.subject Spray pyrolysis en_US
dc.subject ZnSnO3 en_US
dc.title Inverted Configuration of Cu(In,Ga)S2/In2S3on 3D-ZnO/ZnSnO3Bilayer System for Highly Efficient Photoelectrochemical Water Splitting en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id 0000-0002-7004-1217
gdc.author.id 0000-0003-2103-0439
gdc.author.institutional Sankır, Mehmet
gdc.author.institutional Demirci Sankır, Nurdan
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.description.department Faculties, Faculty of Engineering, Department of Material Science and Nanotechnology Engineering en_US
gdc.description.department Fakülteler, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü en_US
gdc.description.endpage 15222 en_US
gdc.description.issue 40 en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 15209 en_US
gdc.description.volume 8 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3085504147
gdc.identifier.wos WOS:000579972900012
gdc.oaire.diamondjournal false
gdc.oaire.downloads 11
gdc.oaire.impulse 23.0
gdc.oaire.influence 3.7015477E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Photoelectrochemical water splitting
gdc.oaire.keywords Indium sulfide
gdc.oaire.keywords Copper indium gallium sulfide
gdc.oaire.keywords 3D-ZnO
gdc.oaire.keywords Spray pyrolysis
gdc.oaire.keywords ZnSnO3
gdc.oaire.popularity 3.376639E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0210 nano-technology
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0104 chemical sciences
gdc.oaire.views 5
gdc.openalex.fwci 1.42280626
gdc.openalex.normalizedpercentile 0.79
gdc.opencitations.count 37
gdc.plumx.crossrefcites 16
gdc.plumx.mendeley 27
gdc.plumx.scopuscites 40
gdc.scopus.citedcount 40
gdc.wos.citedcount 37
relation.isAuthorOfPublication 59a8f901-30d7-4c8a-8f41-fc024b6205b0
relation.isAuthorOfPublication e0291a8c-134d-4949-bb27-26c5fb070149
relation.isAuthorOfPublication.latestForDiscovery 59a8f901-30d7-4c8a-8f41-fc024b6205b0
relation.isOrgUnitOfPublication 491811c3-9c59-4e5f-ade5-8ff67b09dbb4
relation.isOrgUnitOfPublication a9abd75e-3cd8-44b3-a2bb-d7c72a7e2f1d
relation.isOrgUnitOfPublication 80088808-d92c-4251-ad3e-435c98e0ac85
relation.isOrgUnitOfPublication.latestForDiscovery 491811c3-9c59-4e5f-ade5-8ff67b09dbb4

Files