Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10353
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTahir, Aleena-
dc.contributor.authorul Haq, Tanveer-
dc.contributor.authorAftab, Faryal-
dc.contributor.authorZaheer, Muhammad-
dc.contributor.authorDuran, Hatice-
dc.contributor.authorKirchhoff, Katrin-
dc.contributor.authorArshad, Salman N.-
dc.date.accessioned2023-04-16T10:01:16Z-
dc.date.available2023-04-16T10:01:16Z-
dc.date.issued2023-
dc.identifier.issn2574-0970-
dc.identifier.urihttps://doi.org/10.1021/acsanm.2c04344-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10353-
dc.descriptionArticle; Early Accessen_US
dc.description.abstractNickel-based chalcogenides have recently gained considerable interest due to their potential as efficient electrocatalysts for overall water splitting. For example, nickel sulfide (NiSx) with suitable chemisorption energy for both oxygen-and hydrogen-containing intermediates can catalyze both half-cell reactions. Here, we report the synthesis of Ni3S2 nanostructures of similar to 8 nm mean size, anchored over electrospun N-doped carbon nanofibers using microwave synthesis. Careful optimization of the process parameters enabled the structural synthesis of three different types of Ni3S2 (mostly amorphous, partially crystalline, and mostly crystalline) over carbon nanofibers. Scanning and high-resolution transmission electron microscopy, powder X-ray diffraction, and X-ray photoelectron spectroscopy were used to characterize the catalysts and electrochemical performance evaluated in an alkaline medium. The partially crystalline phase of Ni3S2 supported over carbon nanofibers was the best-performing catalyst for the oxygen evolution reaction (OER) due to its high electrochemically active surface area, N-doping of carbon, presence of a crystalline and amorphous mixed phase, and high conductivity of the carbon support which resulted in a low overpotential of 270 mV for the OER with a Tafel slope of only 51 mV/ dec and a low charge transfer resistance of 1.08 omega. Moreover, the catalyst was stable and yielded more than 95% Faradaic efficiency in both the oxygen evolution and hydrogen evolution reactions.en_US
dc.description.sponsorshipHigher Education Commission of Pakistan under the National Research Program for Universities (HEC-NRPU) [4430, 5911]en_US
dc.description.sponsorshipFunding from the Higher Education Commission of Pakistan under the National Research Program for Universities (HEC-NRPU) grant numbers 4430 and 5911 is greatly acknowledged.en_US
dc.language.isoenen_US
dc.publisherAmer Chemical Socen_US
dc.relation.ispartofAcs Applied Nano Materialsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectnickel sulfideen_US
dc.subjectcarbonen_US
dc.subjectwater splittingen_US
dc.subjectnanofiberen_US
dc.subjectnanoparticlesen_US
dc.subjectEfficient Hydrogen Evolutionen_US
dc.subjectOxygen Evolutionen_US
dc.subjectNickel Sulfideen_US
dc.subjectElectrocatalystsen_US
dc.subjectFoamen_US
dc.subjectNanosheetsen_US
dc.subjectHydroxideen_US
dc.subjectCatalysisen_US
dc.subjectOxidationen_US
dc.subjectElectrodeen_US
dc.titleAmorphous to Crystalline Ni3S2 Nanostructures Anchored on N-Doped Carbon Nanofibers for Electrochemical Splitting of Wateren_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.authoridHaq, Tanveer ul/0000-0002-6915-904X-
dc.identifier.wosWOS:000928651200001en_US
dc.identifier.scopus2-s2.0-85147822149en_US
dc.institutionauthor-
dc.identifier.doi10.1021/acsanm.2c04344-
dc.authorscopusid57900916100-
dc.authorscopusid57961516300-
dc.authorscopusid56287314300-
dc.authorscopusid6701688056-
dc.authorscopusid25633500900-
dc.authorscopusid36830195400-
dc.authorscopusid6602336063-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.dept02.6. Department of Material Science and Nanotechnology Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

22
checked on Apr 22, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.