Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10386
Title: A Topology Optimization Methodology With Vibration Constraint for An Aerospace Bracket Design
Authors: Karabıyık, H.
Eroğlu, O.
Eskimez, M.M.
Öncül, B.O.
Yılmaz, M.T.
Gökdağ, I.
Görgülüarslan, R.M.
Keywords: additive manufacturing
aerospace
natural frequency
Topology optimization
3D printing
Additives
Modal analysis
Shape optimization
Topology
Vibration analysis
Aerospace
Analysis evaluation
Aviation industry
Bracket designs
Frequency constraint
High-strength
Lightweight design
Optimization methodology
Strength design
Topology optimisation
Natural frequencies
Publisher: American Society of Mechanical Engineers (ASME)
Abstract: The most important need in the aviation industry is the realization of high-strength and lightweight designs. For this reason, topology optimization methods have become widespread recently. Besides, meeting the natural frequency requirements is one of the important design elements. However, topology optimization with stiffness maximization requires a static finite element analysis evaluation while the natural frequency calculation requires a modal analysis evaluation. Using these two different analysis procedures at the same time in the topology optimization process, on the other hand, is a challenging task. To address this challenge, a topology optimization methodology that accounts for the natural frequency constraint in a compliance minimization process is presented in this study. Since the commercial software can either minimize compliance or minimize the vibration frequency at one time, using these two different analysis procedures at the same time together stands out as an innovative aspect of this study. The applicability of the developed methodology is shown for two bracket designs; namely, the so-called GE bracket and a real-world satellite bracket with natural frequency and mass constraints. The prototypes of the designs are fabricated using the additive manufacturing technique. Copyright © 2022 by ASME.
Description: ASME 2022 International Mechanical Engineering Congress and Exposition, IMECE 2022 -- 30 October 2022 through 3 November 2022 -- 186577
URI: https://doi.org/10.1115/IMECE2022-95843
https://hdl.handle.net/20.500.11851/10386
ISBN: 9780791886656
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection

Show full item record



CORE Recommender

Page view(s)

18
checked on Mar 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.