Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10789
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTaşkent, H.C.-
dc.contributor.authorAlemdaroğlu, K.B.-
dc.contributor.authorUslan, Y.-
dc.contributor.authorErcan, N.-
dc.contributor.authorDemir, T.-
dc.date.accessioned2023-10-24T07:03:37Z-
dc.date.available2023-10-24T07:03:37Z-
dc.date.issued2023-
dc.identifier.issn0020-1383-
dc.identifier.urihttps://doi.org/10.1016/j.injury.2023.111018-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/10789-
dc.description.abstractIntroduction: Pauwels Type III fractures are unstable and frequently treated with cannulated screws (CS) or dynamic hip screws (DHS). The newly developed talon-cannulated compression devices (TCCD) have the potential to provide rotational stability, mainly through their talon. The study investigates whether TCCD has mechanical advantages over conventional screws or can be as stable as DHS in a reverse triangle configuration for an unstable femoral neck fracture. Material and methods: After creating a standard Pauwels Type III unstable femoral neck fracture in 36 synthetic femur bones in cortical/hard cancellous bone density, 18 were reserved for dynamic-static tests, and 18 were used for torsional tests. Each group containing 18 synthetic bones was divided into three groups to apply three different fixation materials (CS, DHS, and TCCD), with six models in each group. The displacement amounts after dynamic-static tests were measured using the AutoCAD program according to the reference measurement criteria. During the dynamic tests, a series of photographs were taken. During the static tests, the beginning and post-test photographs were taken. Finally, torsional tests were performed until implant failure occurred in the synthetic femur. Results: In static axial loading tests, TCDD was found to be statistically superior to conventional CS in AL-BL distance (p = 0,014) and CL distance (p = 0,013) measurements, and there was no significant difference between the other groups. There was no significant difference between all groups in dynamic axial compression tests in any points of interest. In torsional tests, TCCD outperformed cannulated screws in stiffness (p = 0,001) and maximum torque (p = 0,001) categories, and they provided statistically significant superiority to DHS in yield torque (p<0,001) category. Conclusions: Biomechanically, TCCD predominates conventional cannulated screws in femoral neck fractures. TCCD also has superior torsional properties than DHS in the yield torque category. Therefore, TCCD could be the implant of choice for unstable femoral neck fractures. © 2023 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofInjuryen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBiomechanicalen_US
dc.subjectFemoral neck fracturesen_US
dc.subjectOsteosynthesisen_US
dc.subjectPauwels type IIIen_US
dc.subjectTalon-cannulated compression deviceen_US
dc.subjectTorsional stiffnessen_US
dc.titleBiomechanical performance of talon cannulated compression device in pauwels type III fractures: a comparative studyen_US
dc.typeArticleen_US
dc.departmentTOBB ETÜen_US
dc.identifier.wosWOS:001109761500001en_US
dc.identifier.scopus2-s2.0-85172927428en_US
dc.institutionauthor-
dc.identifier.pmid37730490en_US
dc.identifier.doi10.1016/j.injury.2023.111018-
dc.authorscopusid57222183290-
dc.authorscopusid35610746200-
dc.authorscopusid57220005849-
dc.authorscopusid57201408779-
dc.authorscopusid23488228600-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

1
checked on May 11, 2024

Page view(s)

8
checked on May 6, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.