Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/10881
Title: Measurement of the Sensitivity of Two-Particle Correlations in pp Collisions to the Presence of Hard Scatterings
Authors: Aad, G.
Abbott, B.
Abeling, K.
Abicht, N.J.
Abidi, S.H.
Aboulhorma, A.
Abramowicz, H.
Keywords: article
case report
clinical article
correlation analysis
luminance
Issue Date: 2023
Abstract: A key open question in the study of multiparticle production in high-energy pp collisions is the relationship between the "ridge"-i.e., the observed azimuthal correlations between particles in the underlying event that extend over all rapidities-and hard or semihard scattering processes. In particular, it is not known whether jets or their soft fragments are correlated with particles in the underlying event. To address this question, two-particle correlations are measured in pp collisions at sqrt[s]=13  TeV using data collected by the ATLAS experiment at the LHC, with an integrated luminosity of 15.8  pb^{-1}, in two different configurations. In the first case, charged particles associated with jets are excluded from the correlation analysis, while in the second case, correlations are measured between particles within jets and charged particles from the underlying event. Second-order flow coefficients, v_{2}, are presented as a function of event multiplicity and transverse momentum. These measurements show that excluding particles associated with jets does not affect the measured correlations. Moreover, particles associated with jets do not exhibit any significant azimuthal correlations with the underlying event, ruling out hard processes contributing to the ridge.
URI: https://doi.org/10.1103/PhysRevLett.131.162301
https://hdl.handle.net/20.500.11851/10881
ISSN: 1079-7114
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.