Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/11171
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTahir, Aleena-
dc.contributor.authorul Haq, Tanveer-
dc.contributor.authorBasra, Faria Rafique-
dc.contributor.authorDuran, Hatice-
dc.contributor.authorBriscoe, Joe-
dc.contributor.authorMang, Mengnan-
dc.contributor.authorTitirici, Maria-Magdalena-
dc.contributor.authorHussain, Irshad-
dc.contributor.authorUr Rehman, Habib-
dc.date.accessioned2024-04-06T08:09:02Z-
dc.date.available2024-04-06T08:09:02Z-
dc.date.issued2023-
dc.identifier.citationTahir, A., Haq, T. U., Rafique Basra, F., Duran, H., Briscoe, J., Wang, M., ... & Rehman, H. U. (2023). Electronic and Surface Modifications of Ni–Co–Fe Oxides: A Catalyst with Maximum Exposure of Fe Active Sites for Water Electrolysis. ACS Applied Engineering Materials, 1(7), 1698-1710.-
dc.identifier.issn2771-9545-
dc.identifier.urihttps://doi.org/10.1021/acsaenm.2c00257-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/11171-
dc.description.abstractThe production of green hydrogen through water electrolysis is a crucial component of sustainable energy systems. One key challenge is the development of cost-effective electrocatalysts with high performance. Here, we report on the fabrication of a multilayered electrode by coating a nickel foam with nickel–cobalt–iron (Ni–Co–Fe) oxide layers (NiCoFe@NF/SD). The detailed physical and electrochemical characterizations demonstrated that the topmost layer is rich in Fe active sites. The electronic shuffling between the different layers creates an optimal environment for intermediate adsorption–desorption during the oxygen and hydrogen evolution reactions. The NiCoFe@NF/SD electrode exhibits high catalytic performance due to the presence of intrinsically reactive active sites, as well as high structural, chemical, and mechanical durability with a low overpotential of 210 and 166 mV for the oxygen and hydrogen evolution reactions, respectively, to deliver a geometric activity of 20 mA cm–2. In a two-electrode configuration, NiCoFe@NF/SD as cathode and anode requires a relatively small input voltage of 1.56 V to deliver a current density of 10 mA cm–2 and sustained a current density of 100 mA cm–2 for over 90 h with no noticeable degradation. This work offers a simple approach for the rational design of electrodes to produce green hydrogen through water electrolysis.en_US
dc.language.isoenen_US
dc.publisherACS Publicationsen_US
dc.relation.ispartofACS Applied Engineering Materialsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectsequential depositionen_US
dc.subjectelectronic modificationen_US
dc.subjectcatalyst support interactionen_US
dc.subjectabundant active sitesen_US
dc.subjectsustainable electrodesen_US
dc.titleElectronic and Surface Modifications of Ni–Co–Fe Oxides: A Catalyst with Maximum Exposure of Fe Active Sites for Water Electrolysisen_US
dc.typeArticleen_US
dc.departmentTOBB ETU Material Science and Nanotechnology Engineeringen_US
dc.identifier.volume1en_US
dc.identifier.issue7en_US
dc.identifier.startpage1698en_US
dc.identifier.endpage1710en_US
dc.authorid0000-0001-6203-3906-
dc.institutionauthorDuran, Hatice-
dc.identifier.doi10.1021/acsaenm.2c00257-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept02.6. Department of Material Science and Nanotechnology Engineering-
Appears in Collections:Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü / Department of Material Science & Nanotechnology Engineering
Show simple item record



CORE Recommender

Page view(s)

2
checked on May 6, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.