Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12680
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇakırgil, Seray-
dc.contributor.authorYücel, Eda-
dc.date.accessioned2025-09-10T17:26:49Z-
dc.date.available2025-09-10T17:26:49Z-
dc.date.issued2025-
dc.identifier.issn0360-8352-
dc.identifier.urihttps://doi.org/10.1016/j.cie.2025.111478-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12680-
dc.description.abstractThis study addresses an integrated optimization problem in pharmaceutical blister packaging operations, combining three interdependent decision layers: packaging design, machinery and mold investment, and long-term production planning. These decisions are critical for balancing material efficiency, cost-effectiveness, and operational feasibility under time-varying demand. While existing literature typically treats these components in isolation, we propose a novel mixed-integer programming model that captures their interactions within a unified framework. Solving this problem exactly is computationally challenging for real-world instances; thus, we develop a tailored metaheuristic approach based on Adaptive Large Neighborhood Search (ALNS), enhanced with problem-specific heuristics and local search. Computational experiments on realistic data from a leading Turkish pharmaceutical company demonstrate the effectiveness of our approach in generating high-quality solutions across different planning horizons and demand scenarios. Additionally, our model supports sustainability goals by reducing raw material usage in packaging design, contributing to lower carbon emissions during production. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofComputers & Industrial Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdaptive Large Neighborhood Searchen_US
dc.subjectBlister Packagingen_US
dc.subjectHeuristicsen_US
dc.subjectMixed Integer Linear Programmingen_US
dc.subjectPharmaceutical Industryen_US
dc.subjectProduction Planningen_US
dc.subjectDrug Productsen_US
dc.subjectHeuristic Methodsen_US
dc.subjectHeuristic Programmingen_US
dc.subjectInteger Linear Programmingen_US
dc.subjectInteger Programmingen_US
dc.subjectInvestmentsen_US
dc.subjectMachine Designen_US
dc.subjectMixed-Integer Linear Programmingen_US
dc.subjectPackagingen_US
dc.subjectPackaging Materialsen_US
dc.subjectAdaptive Large Neighborhood Searchesen_US
dc.subjectBlister Packagingen_US
dc.subjectHeuristicen_US
dc.subjectInteger Linear Programmingen_US
dc.subjectIntegrated Optimizationen_US
dc.subjectMixed Integer Linearen_US
dc.subjectPackaging Designsen_US
dc.subjectPharmaceutical Industryen_US
dc.subjectProduction Planningen_US
dc.subjectSolid Formsen_US
dc.subjectProduction Controlen_US
dc.titleOptimizing Blister Packaging Design for Solid-Form Pharmaceuticalsen_US
dc.typeArticleen_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.volume209en_US
dc.identifier.scopus2-s2.0-105014273931-
dc.identifier.doi10.1016/j.cie.2025.111478-
dc.authorscopusid57215499785-
dc.authorscopusid24773991000-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept02.4. Department of Industrial Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

1,586
checked on Sep 22, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.