Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12700
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOnal, Goksun-
dc.contributor.authorGuven, Mesut-
dc.date.accessioned2025-10-10T15:45:03Z-
dc.date.available2025-10-10T15:45:03Z-
dc.date.issued2025-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2025.3604979-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12700-
dc.description.abstractMalware analysis involves studying harmful software to understand its behavior and find ways to detect and prevent it. As cyberattacks become more advanced, this process becomes increasingly important for safeguarding systems and data. Traditional methods in malware analysis often rely on examining the code itself, which can miss malicious actions that only occur during execution. This study addresses this limitation by combining the dynamic observation of malware behavior with an innovative use of Windows Event Logs as input, a detailed system data source. During the study, a secure environment was created to safely execute malware, collect input, and provide valuable information on how malicious software interacts with systems. New methods were developed to extract meaningful information from the logs, then used to train machine-learning models capable of accurately distinguishing malware from legitimate programs. By demonstrating the untapped potential of Windows Event Logs, this study offers new tools to improve real-time malware detection and enhance cybersecurity. On a dataset of approximate 7000 Windows executable file, roughly sixty percent benign and forty percent malware, the log-feature MLP reached 91.2 % accuracy with a 1.6-point standard deviation across five folds, achieved a ROC-AUC of 0.962 +/- 0.009 on an unseen hold out set.en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Inc.en_US
dc.relation.ispartofIEEE Accessen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMalwareen_US
dc.subjectFeature Extractionen_US
dc.subjectCodesen_US
dc.subjectStatic Analysisen_US
dc.subjectAccuracyen_US
dc.subjectPipelinesen_US
dc.subjectReal-Time Systemsen_US
dc.subjectDeep Learningen_US
dc.subjectComputer Crimeen_US
dc.subjectAnalytical Modelsen_US
dc.subjectCyber Securityen_US
dc.subjectBehavioral Malware Analysisen_US
dc.subjectSandboxen_US
dc.subjectFeature Engineeringen_US
dc.subjectWindows Event Logsen_US
dc.subjectMachine Learningen_US
dc.titleEnhancing Dynamic Malware Behavior Analysis Through Novel Windows Events With Machine Learningen_US
dc.typeArticleen_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.volume13en_US
dc.identifier.startpage153937en_US
dc.identifier.endpage153958en_US
dc.identifier.wosWOS:001570324000013-
dc.identifier.scopus2-s2.0-105015064851-
dc.identifier.doi10.1109/ACCESS.2025.3604979-
dc.authorscopusid60085887800-
dc.authorscopusid56343141800-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
dc.description.woscitationindexScience Citation Index Expanded-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

40
checked on Nov 3, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.