Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/12716
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ozbayoglu, Maya Irem | - |
dc.contributor.author | Ozbayoglu, A. Murat | - |
dc.date.accessioned | 2025-10-10T15:45:08Z | - |
dc.date.available | 2025-10-10T15:45:08Z | - |
dc.date.issued | 2025 | - |
dc.identifier.isbn | 9798331566555 | - |
dc.identifier.uri | https://doi.org/10.1109/SIU66497.2025.11112481 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/12716 | - |
dc.description | Isik University | en_US |
dc.description.abstract | Collective action has been employed across various historical contexts to influence societal change. Examples such as the suffragist and civil rights movements in the United States and recent farmers' protests in Europe demonstrate its potential impact. However, predicting protest outcomes remains difficult due to the interaction of multiple factors. In this study, the factors associated with protest success are examined, and a machine learning approach is proposed to estimate their effectiveness. After data rebalancing, outlier removal, and hyperparameter tuning, the Random Forest model achieved 75% accuracy and a 59% F1 score on the Global Protest Tracker dataset. The proposed method is intended to support computational assessments of protest dynamics and to encourage collaboration between social and computational sciences. © 2025 Elsevier B.V., All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | -- 33rd IEEE Conference on Signal Processing and Communications Applications, SIU 2025 -- Istanbul; Isik University Sile Campus -- 211450 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Computational Politics | en_US |
dc.subject | Computational Social Science | en_US |
dc.subject | Predictive Machine Learning | en_US |
dc.subject | Protest Effectiveness Analysis | en_US |
dc.subject | Protest Success Prediction | en_US |
dc.subject | Social Protest Movement | en_US |
dc.subject | Behavioral Research | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Predictive Analytics | en_US |
dc.subject | Social Sciences Computing | en_US |
dc.subject | Collective Action | en_US |
dc.subject | Computational Politic | en_US |
dc.subject | Computational Social Science | en_US |
dc.subject | Effectiveness Analysis | en_US |
dc.subject | Machine-Learning | en_US |
dc.subject | Predictive Machine Learning | en_US |
dc.subject | Protest Effectiveness Analyze | en_US |
dc.subject | Protest Success Prediction | en_US |
dc.subject | Social Protest Movement | en_US |
dc.subject | Societal Changes | en_US |
dc.subject | Learning Systems | en_US |
dc.title | Artificial Intelligence Based Social Protest Effectiveness Analysis | en_US |
dc.type | Conference Object | en_US |
dc.department | TOBB University of Economics and Technology | en_US |
dc.identifier.scopus | 2-s2.0-105015374407 | - |
dc.identifier.doi | 10.1109/SIU66497.2025.11112481 | - |
dc.authorscopusid | 60092957000 | - |
dc.authorscopusid | 57947593100 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.languageiso639-1 | en | - |
item.openairetype | Conference Object | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.