Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12716
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzbayoglu, Maya Irem-
dc.contributor.authorOzbayoglu, A. Murat-
dc.date.accessioned2025-10-10T15:45:08Z-
dc.date.available2025-10-10T15:45:08Z-
dc.date.issued2025-
dc.identifier.isbn9798331566555-
dc.identifier.urihttps://doi.org/10.1109/SIU66497.2025.11112481-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12716-
dc.descriptionIsik Universityen_US
dc.description.abstractCollective action has been employed across various historical contexts to influence societal change. Examples such as the suffragist and civil rights movements in the United States and recent farmers' protests in Europe demonstrate its potential impact. However, predicting protest outcomes remains difficult due to the interaction of multiple factors. In this study, the factors associated with protest success are examined, and a machine learning approach is proposed to estimate their effectiveness. After data rebalancing, outlier removal, and hyperparameter tuning, the Random Forest model achieved 75% accuracy and a 59% F1 score on the Global Protest Tracker dataset. The proposed method is intended to support computational assessments of protest dynamics and to encourage collaboration between social and computational sciences. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof-- 33rd IEEE Conference on Signal Processing and Communications Applications, SIU 2025 -- Istanbul; Isik University Sile Campus -- 211450en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectComputational Politicsen_US
dc.subjectComputational Social Scienceen_US
dc.subjectPredictive Machine Learningen_US
dc.subjectProtest Effectiveness Analysisen_US
dc.subjectProtest Success Predictionen_US
dc.subjectSocial Protest Movementen_US
dc.subjectBehavioral Researchen_US
dc.subjectMachine Learningen_US
dc.subjectPredictive Analyticsen_US
dc.subjectSocial Sciences Computingen_US
dc.subjectCollective Actionen_US
dc.subjectComputational Politicen_US
dc.subjectComputational Social Scienceen_US
dc.subjectEffectiveness Analysisen_US
dc.subjectMachine-Learningen_US
dc.subjectPredictive Machine Learningen_US
dc.subjectProtest Effectiveness Analyzeen_US
dc.subjectProtest Success Predictionen_US
dc.subjectSocial Protest Movementen_US
dc.subjectSocietal Changesen_US
dc.subjectLearning Systemsen_US
dc.titleArtificial Intelligence Based Social Protest Effectiveness Analysisen_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.scopus2-s2.0-105015374407-
dc.identifier.doi10.1109/SIU66497.2025.11112481-
dc.authorscopusid60092957000-
dc.authorscopusid57947593100-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.languageiso639-1en-
item.openairetypeConference Object-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

2
checked on Oct 20, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.