Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/12717
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Deniz, Oguz | - |
dc.contributor.author | Unsoy, N. Ceyda | - |
dc.contributor.author | Eravci, Bahaeddin | - |
dc.date.accessioned | 2025-10-10T15:47:27Z | - |
dc.date.available | 2025-10-10T15:47:27Z | - |
dc.date.issued | 2025 | - |
dc.identifier.isbn | 9798331566555 | - |
dc.identifier.uri | https://doi.org/10.1109/SIU66497.2025.11112036 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/12717 | - |
dc.description | Isik University | en_US |
dc.description.abstract | Named Entity Recognition (NER) plays a fundamental role in identifying and classifying named entities within texts. However, in resource-scarce languages and applications - particularly in Turkish - the lack of annotated data leads to a decline in model performance. In this study, synthetic examples were generated using Large Language Models (LLMs) to augment the existing primary dataset, with the aim of enhancing the k-shot learning performance of NER models. Experimental results demonstrate that models trained on the augmented dataset achieve performance improvements by a factor of 40 to 60 compared to those trained on the original dataset, indicating that the proposed method offers a cost-effective and viable alternative for resource-scarce applications. © 2025 Elsevier B.V., All rights reserved. | en_US |
dc.language.iso | tr | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | -- 33rd IEEE Conference on Signal Processing and Communications Applications, SIU 2025 -- Istanbul; Isik University Sile Campus -- 211450 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Data Augmentation | en_US |
dc.subject | Large Language Models (LLM) | en_US |
dc.subject | Named Entity Recognition (NER) | en_US |
dc.subject | Natural Language Processing | en_US |
dc.subject | Binary Alloys | en_US |
dc.subject | Large Datasets | en_US |
dc.subject | Natural Language Processing Systems | en_US |
dc.subject | Data Augmentation | en_US |
dc.subject | Language Model | en_US |
dc.subject | Language Processing | en_US |
dc.subject | Large Language Model | en_US |
dc.subject | Model-Based OPC | en_US |
dc.subject | Named Entity Recognition | en_US |
dc.subject | Natural Language Processing | en_US |
dc.subject | Natural Languages | en_US |
dc.subject | Turkishs | en_US |
dc.subject | Cost Effectiveness | en_US |
dc.title | Büyük Dil Modeli Tabanli Veri Artirimi ile Türkçe Varlık İsmi Çıkarımı | en_US |
dc.title.alternative | Large Language Model Based Data Augmentation for Turkish Named Entity Recognition | en_US |
dc.type | Conference Object | en_US |
dc.department | TOBB University of Economics and Technology | en_US |
dc.identifier.scopus | 2-s2.0-105015405496 | - |
dc.identifier.doi | 10.1109/SIU66497.2025.11112036 | - |
dc.authorscopusid | 60092907400 | - |
dc.authorscopusid | 60093143100 | - |
dc.authorscopusid | 43260940300 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.languageiso639-1 | tr | - |
item.openairetype | Conference Object | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.