Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12717
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDeniz, Oguz-
dc.contributor.authorUnsoy, N. Ceyda-
dc.contributor.authorEravci, Bahaeddin-
dc.date.accessioned2025-10-10T15:47:27Z-
dc.date.available2025-10-10T15:47:27Z-
dc.date.issued2025-
dc.identifier.isbn9798331566555-
dc.identifier.urihttps://doi.org/10.1109/SIU66497.2025.11112036-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12717-
dc.descriptionIsik Universityen_US
dc.description.abstractNamed Entity Recognition (NER) plays a fundamental role in identifying and classifying named entities within texts. However, in resource-scarce languages and applications - particularly in Turkish - the lack of annotated data leads to a decline in model performance. In this study, synthetic examples were generated using Large Language Models (LLMs) to augment the existing primary dataset, with the aim of enhancing the k-shot learning performance of NER models. Experimental results demonstrate that models trained on the augmented dataset achieve performance improvements by a factor of 40 to 60 compared to those trained on the original dataset, indicating that the proposed method offers a cost-effective and viable alternative for resource-scarce applications. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof-- 33rd IEEE Conference on Signal Processing and Communications Applications, SIU 2025 -- Istanbul; Isik University Sile Campus -- 211450en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectData Augmentationen_US
dc.subjectLarge Language Models (LLM)en_US
dc.subjectNamed Entity Recognition (NER)en_US
dc.subjectNatural Language Processingen_US
dc.subjectBinary Alloysen_US
dc.subjectLarge Datasetsen_US
dc.subjectNatural Language Processing Systemsen_US
dc.subjectData Augmentationen_US
dc.subjectLanguage Modelen_US
dc.subjectLanguage Processingen_US
dc.subjectLarge Language Modelen_US
dc.subjectModel-Based OPCen_US
dc.subjectNamed Entity Recognitionen_US
dc.subjectNatural Language Processingen_US
dc.subjectNatural Languagesen_US
dc.subjectTurkishsen_US
dc.subjectCost Effectivenessen_US
dc.titleBüyük Dil Modeli Tabanli Veri Artirimi ile Türkçe Varlık İsmi Çıkarımıen_US
dc.title.alternativeLarge Language Model Based Data Augmentation for Turkish Named Entity Recognitionen_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.scopus2-s2.0-105015405496-
dc.identifier.doi10.1109/SIU66497.2025.11112036-
dc.authorscopusid60092907400-
dc.authorscopusid60093143100-
dc.authorscopusid43260940300-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1tr-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeConference Object-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

40
checked on Dec 1, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.