Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12717
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDeniz, Oguz-
dc.contributor.authorUnsoy, N. Ceyda-
dc.contributor.authorEravci, Bahaeddin-
dc.date.accessioned2025-10-10T15:47:27Z-
dc.date.available2025-10-10T15:47:27Z-
dc.date.issued2025-
dc.identifier.isbn9798331566555-
dc.identifier.urihttps://doi.org/10.1109/SIU66497.2025.11112036-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12717-
dc.descriptionIsik Universityen_US
dc.description.abstractNamed Entity Recognition (NER) plays a fundamental role in identifying and classifying named entities within texts. However, in resource-scarce languages and applications - particularly in Turkish - the lack of annotated data leads to a decline in model performance. In this study, synthetic examples were generated using Large Language Models (LLMs) to augment the existing primary dataset, with the aim of enhancing the k-shot learning performance of NER models. Experimental results demonstrate that models trained on the augmented dataset achieve performance improvements by a factor of 40 to 60 compared to those trained on the original dataset, indicating that the proposed method offers a cost-effective and viable alternative for resource-scarce applications. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof-- 33rd IEEE Conference on Signal Processing and Communications Applications, SIU 2025 -- Istanbul; Isik University Sile Campus -- 211450en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectData Augmentationen_US
dc.subjectLarge Language Models (LLM)en_US
dc.subjectNamed Entity Recognition (NER)en_US
dc.subjectNatural Language Processingen_US
dc.subjectBinary Alloysen_US
dc.subjectLarge Datasetsen_US
dc.subjectNatural Language Processing Systemsen_US
dc.subjectData Augmentationen_US
dc.subjectLanguage Modelen_US
dc.subjectLanguage Processingen_US
dc.subjectLarge Language Modelen_US
dc.subjectModel-Based OPCen_US
dc.subjectNamed Entity Recognitionen_US
dc.subjectNatural Language Processingen_US
dc.subjectNatural Languagesen_US
dc.subjectTurkishsen_US
dc.subjectCost Effectivenessen_US
dc.titleBüyük Dil Modeli Tabanli Veri Artirimi ile Türkçe Varlık İsmi Çıkarımıen_US
dc.title.alternativeLarge Language Model Based Data Augmentation for Turkish Named Entity Recognitionen_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.scopus2-s2.0-105015405496-
dc.identifier.doi10.1109/SIU66497.2025.11112036-
dc.authorscopusid60092907400-
dc.authorscopusid60093143100-
dc.authorscopusid43260940300-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.languageiso639-1tr-
item.openairetypeConference Object-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

8
checked on Oct 20, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.