Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12718
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkan, Baris-
dc.contributor.authorOzbayoglu, A. Murat-
dc.date.accessioned2025-10-10T15:47:27Z-
dc.date.available2025-10-10T15:47:27Z-
dc.date.issued2025-
dc.identifier.isbn9798331566555-
dc.identifier.urihttps://doi.org/10.1109/SIU66497.2025.11112087-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12718-
dc.descriptionIsik Universityen_US
dc.description.abstractArtificial neural networks are widely used in financial forecasting models. Although the most preferred model is LSTM, some studies based on CNN can also be found. In this study, the developed CNN model applies the convolution operation on three-dimensional data with a different approach. During data preparation, 18 different technical analysis indicators were selected. These indicators were calculated based on 20 different values, corresponding to periods ranging from 5 to 25 for each day. The resulting two-dimensional daily data was augmented with 20 days of past values, forming datasets of size 18 × 20 × 20 for each day. The data was labeled with Buy, Sell, and Hold classes. Based on the model's outputs, trading activities conducted over 750 trading days between 2022 and 2024 on Dow30 stocks and selected exchange-traded funds achieved an average annual return of 18.15% and 20.16%, respectively, outperforming the buy-and-hold strategy. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof-- 33rd IEEE Conference on Signal Processing and Communications Applications, SIU 2025 -- Istanbul; Isik University Sile Campus -- 211450en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAlgorithmic Tradingen_US
dc.subjectArtificial Intelligence In Financeen_US
dc.subjectClassificationen_US
dc.subjectCNNen_US
dc.subjectCommerceen_US
dc.subjectElectronic Tradingen_US
dc.subjectFinancial Marketsen_US
dc.subjectNeural Networksen_US
dc.subjectAlgorithmic Tradingen_US
dc.subjectAlgorithmic Trading Systemen_US
dc.subjectArtificial Intelligence In Financeen_US
dc.subjectCnn Modelsen_US
dc.subjectData Preparationen_US
dc.subjectFinancial Forecastingen_US
dc.subjectForecasting Modelsen_US
dc.subjectNeural-Networksen_US
dc.subjectTechnical Analysisen_US
dc.subjectThree-Dimensional Dataen_US
dc.subjectClassification of Informationen_US
dc.title3 Boyutlu Evrişimsel Sinir Ağları Temelli Algoritmik Alım Satım Sistemien_US
dc.title.alternative3D CNN Based Algorithmic Trading Systemen_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.scopus2-s2.0-105015424336-
dc.identifier.doi10.1109/SIU66497.2025.11112087-
dc.authorscopusid60093258300-
dc.authorscopusid57947593100-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.languageiso639-1tr-
item.openairetypeConference Object-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

6
checked on Oct 20, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.