Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12725
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaradaş, Furkan-
dc.contributor.authorEravci, Bahaeddin-
dc.contributor.authorOzbayoglu, A. Murat-
dc.date.accessioned2025-10-10T15:47:28Z-
dc.date.available2025-10-10T15:47:28Z-
dc.date.issued2025-
dc.identifier.isbn9798331566555-
dc.identifier.urihttps://doi.org/10.1109/SIU66497.2025.11112242-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12725-
dc.descriptionIsik Universityen_US
dc.description.abstractIn today's financial markets, the influence of dynamic factors is becoming increasingly evident, and markets are affected by real-time data from various sources. In this study, a multimodal machine learning approach is adopted by integrating traditional technical analysis metrics, tweets, and news articles with historical price data. Market sentiment and investor psychology are measured through sentiment analysis of textual data using both the FinBERT and ChatGPT-4o models, and the obtained outputs are combined with financial metrics to construct an LSTM-based stock price prediction model. To enhance the model's stability, LSTM models derived from different training sessions are merged using an ensemble learning method, and the two approaches are compared. The results demonstrate that the ensemble model outperforms the standard LSTM model, and integrating financial indicators with tweet and news data, as opposed to relying solely on price data, leads to increased overall profit. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof-- 33rd IEEE Conference on Signal Processing and Communications Applications, SIU 2025 -- Istanbul; Isik University Sile Campus -- 211450en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep Learningen_US
dc.subjectDeep Neural Networksen_US
dc.subjectFinancial Forecastingen_US
dc.subjectLarge Language Modelsen_US
dc.subjectMultimodal Machine Learningen_US
dc.subjectStock Market Predictionen_US
dc.subjectCommerceen_US
dc.subjectCostsen_US
dc.subjectElectronic Tradingen_US
dc.subjectFinancial Marketsen_US
dc.subjectForecastingen_US
dc.subjectInvestmentsen_US
dc.subjectLearning Systemsen_US
dc.subjectLong Short-Term Memoryen_US
dc.subjectDeep Learningen_US
dc.subjectFinancial Forecastingen_US
dc.subjectLanguage Modelen_US
dc.subjectLarge Language Modelen_US
dc.subjectMachine-Learningen_US
dc.subjectMulti-Modalen_US
dc.subjectMultimodal Machine Learningen_US
dc.subjectNeural-Networksen_US
dc.subjectStock Market Predictionen_US
dc.subjectStock Price Predictionen_US
dc.subjectDeep Neural Networksen_US
dc.titleÇok Modlu Veri ile Hisse Senedi Fiyati Tahminien_US
dc.title.alternativeStock Price Prediction With Multimodal Dataen_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.scopus2-s2.0-105015544168-
dc.identifier.doi10.1109/SIU66497.2025.11112242-
dc.authorscopusid59637874300-
dc.authorscopusid43260940300-
dc.authorscopusid57947593100-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.languageiso639-1tr-
item.openairetypeConference Object-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

20
checked on Oct 20, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.