Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12726
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLafcı, Oğuz-
dc.contributor.authorAkkur, Erkan-
dc.contributor.authorCelepli, Pinar-
dc.contributor.authorÖztekin, Pelin Seher-
dc.contributor.authorEroğul, Osman-
dc.contributor.authorKoşar, Pinar Nercis-
dc.date.accessioned2025-10-10T15:47:28Z-
dc.date.available2025-10-10T15:47:28Z-
dc.date.issued2025-
dc.identifier.issn2523-8973-
dc.identifier.urihttps://doi.org/10.1007/s42399-025-01807-5-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12726-
dc.description.abstractRadiomics is emerging as a promising quantitative tool for extracting imaging features. The diagnostic accuracy of mammography may be altered by the reader’s experience. To build a radiomics model to differentiate benign and malignant mammographic masses and to evaluate whether the diagnostic performance of mammography could be improved by radiomics. In this retrospective study, 101 patients were included in the training set, and 36 patients were included in the test set. A total of 127 radiomics features were extracted from each mammographic mass using both craniocaudal (CC) and mediolateral oblique projection (MLO) images. RELIEF algorithm and Mann–Whitney-U test were used for feature selection. Seven machine learning algorithms were applied to construct a predictive model. Machine learning algorithms were trained by stratified tenfold cross-validation on the training set. The classification performance of the radiomics models was compared with the diagnostic predictions of two radiologists with different experience levels by using receiver operating characteristic curve (ROC) analysis. A total of 15 radiomics features remained after the pre-processing. “XGBoost” presented the best differentiation ability among the seven machine learning methods and yielded 0.871 area under the curve (AUC), 0.888 accuracy, 0.895 sensitivity, and 0.875 specificity. The breast radiologist yielded 0.901 (AUC), 0.916 accuracy, 0.956 sensitivity, and 0.846 specificity. The inexperienced radiologist yielded 0.819 (AUC), 0.833 accuracy, 0.869 sensitivity, and 0.769 specificity. The radiomics-based model shows favorable outcomes in differentiating benign and malignant mammographic masses. Quantifiable assessment of mammography could enhance radiology practice, especially for inexperienced radiologists. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.relation.ispartofSN Comprehensive Clinical Medicineen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBreast Canceren_US
dc.subjectMachine Learningen_US
dc.subjectMammographyen_US
dc.subjectRadiomicsen_US
dc.subjectAdulten_US
dc.subjectAlgorithmen_US
dc.subjectArticleen_US
dc.subjectBayesian Learningen_US
dc.subjectBenign Breast Tumoren_US
dc.subjectBreast Canceren_US
dc.subjectCancer Diagnosisen_US
dc.subjectCranial Caudal Axisen_US
dc.subjectCross Validationen_US
dc.subjectDecision Treeen_US
dc.subjectDiagnostic Accuracyen_US
dc.subjectDiagnostic Imagingen_US
dc.subjectFeature Extractionen_US
dc.subjectFeature Selectionen_US
dc.subjectFemaleen_US
dc.subjectHumanen_US
dc.subjectLogistic Regression Analysisen_US
dc.subjectMachine Learning Algorithmen_US
dc.subjectMajor Clinical Studyen_US
dc.subjectMammographyen_US
dc.subjectMediolateral Oblique Projection Imagingen_US
dc.subjectMiddle Ageden_US
dc.subjectPredictive Modelen_US
dc.subjectRadiomicsen_US
dc.subjectRandom Foresten_US
dc.subjectReceiver Operating Characteristicen_US
dc.subjectRelief Algorithmen_US
dc.subjectRetrospective Studyen_US
dc.subjectSupport Vector Machineen_US
dc.subjectTrainingen_US
dc.titleApplication of Radiomics Analysis on Mammography for Differentiating Benign and Malignant Massesen_US
dc.typeArticleen_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.volume7en_US
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-105015975582-
dc.identifier.doi10.1007/s42399-025-01807-5-
dc.authorscopusid57211575183-
dc.authorscopusid55260189900-
dc.authorscopusid35766285500-
dc.authorscopusid7801594334-
dc.authorscopusid56247443100-
dc.authorscopusid14037541700-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept02.2. Department of Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

34
checked on Nov 3, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.