Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12732
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEratalay, Elif Yagmur-
dc.contributor.authorZengin, Muhammed Said-
dc.contributor.authorÖzdemir, Suat-
dc.date.accessioned2025-10-10T15:47:28Z-
dc.date.available2025-10-10T15:47:28Z-
dc.date.issued2025-
dc.identifier.isbn9798331511968-
dc.identifier.urihttps://doi.org/10.1109/SmartNets65254.2025.11106799-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12732-
dc.descriptionBrowsy; CIS Arge; PTT Teknolojien_US
dc.description.abstractWith the rise of big data, there is a growing need for systems that allow users to query large datasets using natural language. This paper introduces a scalable, three-stage architecture that translates user queries into structured searches and delivers concise, meaningful results. The pipeline includes: (i) converting natural language input into structured queries via prompt engineering; (ii) executing these queries on OpenSearch over a large news dataset; and (iii) grouping the most relevant results and then summarizing them using transformer-based NLP models. Although built on OpenSearch, the architecture is compatible with other database platforms such as PostgreSQL, MongoDB, Elasticsearch, and Apache Druid. This design improves usability by making information retrieval more natural, accurate, and scalable. All associated code, dataset references, prompts, and demonstration materials are available at: nl2insights.github.io © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof-- 7th International Conference on Smart Applications, Communications and Networking, SmartNets 2025 -- Hybrid, Istanbul -- 211441en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLarge Language Modelsen_US
dc.subjectNatural Language Processingen_US
dc.subjectOpensearchen_US
dc.subjectPrompt Engineeringen_US
dc.subjectSemantic Searchen_US
dc.subjectComputational Linguisticsen_US
dc.subjectInformation Retrievalen_US
dc.subjectLarge Datasetsen_US
dc.subjectNatural Language Processing Systemsen_US
dc.subjectQuery Languagesen_US
dc.subjectQuery Processingen_US
dc.subjectSearch Enginesen_US
dc.subjectStructured Query Languageen_US
dc.subjectLanguage Modelen_US
dc.subjectLanguage Processingen_US
dc.subjectLarge Language Modelen_US
dc.subjectNatural Language Processingen_US
dc.subjectNatural Languagesen_US
dc.subjectOpensearchen_US
dc.subjectPrompt Engineeringen_US
dc.subjectQuery Transformationsen_US
dc.subjectScalable Architecturesen_US
dc.subjectSemantic Searchen_US
dc.subjectSemanticsen_US
dc.titleFrom Natural Language to Insights: A Scalable Architecture for Query Transformation and Result Summarizationen_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.scopus2-s2.0-105015532805-
dc.identifier.doi10.1109/SmartNets65254.2025.11106799-
dc.authorscopusid60090700400-
dc.authorscopusid57226399864-
dc.authorscopusid23467461900-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeConference Object-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

52
checked on Dec 1, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.