Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/12732Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Eratalay, Elif Yagmur | - |
| dc.contributor.author | Zengin, Muhammed Said | - |
| dc.contributor.author | Özdemir, Suat | - |
| dc.date.accessioned | 2025-10-10T15:47:28Z | - |
| dc.date.available | 2025-10-10T15:47:28Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.isbn | 9798331511968 | - |
| dc.identifier.uri | https://doi.org/10.1109/SmartNets65254.2025.11106799 | - |
| dc.identifier.uri | https://hdl.handle.net/20.500.11851/12732 | - |
| dc.description | Browsy; CIS Arge; PTT Teknoloji | en_US |
| dc.description.abstract | With the rise of big data, there is a growing need for systems that allow users to query large datasets using natural language. This paper introduces a scalable, three-stage architecture that translates user queries into structured searches and delivers concise, meaningful results. The pipeline includes: (i) converting natural language input into structured queries via prompt engineering; (ii) executing these queries on OpenSearch over a large news dataset; and (iii) grouping the most relevant results and then summarizing them using transformer-based NLP models. Although built on OpenSearch, the architecture is compatible with other database platforms such as PostgreSQL, MongoDB, Elasticsearch, and Apache Druid. This design improves usability by making information retrieval more natural, accurate, and scalable. All associated code, dataset references, prompts, and demonstration materials are available at: nl2insights.github.io © 2025 Elsevier B.V., All rights reserved. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
| dc.relation.ispartof | -- 7th International Conference on Smart Applications, Communications and Networking, SmartNets 2025 -- Hybrid, Istanbul -- 211441 | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Large Language Models | en_US |
| dc.subject | Natural Language Processing | en_US |
| dc.subject | Opensearch | en_US |
| dc.subject | Prompt Engineering | en_US |
| dc.subject | Semantic Search | en_US |
| dc.subject | Computational Linguistics | en_US |
| dc.subject | Information Retrieval | en_US |
| dc.subject | Large Datasets | en_US |
| dc.subject | Natural Language Processing Systems | en_US |
| dc.subject | Query Languages | en_US |
| dc.subject | Query Processing | en_US |
| dc.subject | Search Engines | en_US |
| dc.subject | Structured Query Language | en_US |
| dc.subject | Language Model | en_US |
| dc.subject | Language Processing | en_US |
| dc.subject | Large Language Model | en_US |
| dc.subject | Natural Language Processing | en_US |
| dc.subject | Natural Languages | en_US |
| dc.subject | Opensearch | en_US |
| dc.subject | Prompt Engineering | en_US |
| dc.subject | Query Transformations | en_US |
| dc.subject | Scalable Architectures | en_US |
| dc.subject | Semantic Search | en_US |
| dc.subject | Semantics | en_US |
| dc.title | From Natural Language to Insights: A Scalable Architecture for Query Transformation and Result Summarization | en_US |
| dc.type | Conference Object | en_US |
| dc.department | TOBB University of Economics and Technology | en_US |
| dc.identifier.scopus | 2-s2.0-105015532805 | - |
| dc.identifier.doi | 10.1109/SmartNets65254.2025.11106799 | - |
| dc.authorscopusid | 60090700400 | - |
| dc.authorscopusid | 57226399864 | - |
| dc.authorscopusid | 23467461900 | - |
| dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| dc.identifier.scopusquality | N/A | - |
| dc.identifier.wosquality | N/A | - |
| item.cerifentitytype | Publications | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.languageiso639-1 | en | - |
| item.grantfulltext | none | - |
| item.fulltext | No Fulltext | - |
| item.openairetype | Conference Object | - |
| Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection | |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.