Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12740
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArin, Efe-
dc.contributor.authorYetik, I. Samil-
dc.contributor.authorBrankov, Jovan G.-
dc.contributor.authorYang, Yongyi-
dc.contributor.authorKing, Michael A.-
dc.date.accessioned2025-10-10T15:47:29Z-
dc.date.available2025-10-10T15:47:29Z-
dc.date.issued2025-
dc.identifier.isbn9798331566555-
dc.identifier.urihttps://doi.org/10.1109/SIU66497.2025.11111775-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12740-
dc.descriptionIsik Universityen_US
dc.description.abstractSegmentation of myocardial tissue in SPECT (Single Photon Emission Computed Tomography) left ventricle images is a crucial problem for assisting diagnosis. Non-AI-based segmentation models in this field typically segment by first extracting key points such as the apex and base of the heart, as well as lines like the long axis, based on predefined assumptions. However, these models perform poorly in cases where SPECT images are noisy. In contrast, AI-based models, which are more robust to noise, can perform segmentation without requiring any predefined points or axes. In clinical practice, segmented heart images are examined by experts using short-axis, vertical long-axis, and horizontal long-axis views. Therefore, determining the long axis of the left ventricle is of critical importance. As a novel contribution to the literature, this study aims to extract the long axis from binary segmentation images in AI-supported SPECT left ventricle segmentation models - a missing aspect in current approaches. The deep learning model we developed determines the symmetry axis in given 3D binary segmentation images and extracts clinically important cross-sections from long and short axes for diagnostic evaluation. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof-- 33rd IEEE Conference on Signal Processing and Communications Applications, SIU 2025 -- Istanbul; Isik University Sile Campus -- 211450en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep Learningen_US
dc.subjectHearten_US
dc.subjectLeft Ventricleen_US
dc.subjectLong Axisen_US
dc.subjectSPECTen_US
dc.subjectBinary Imagesen_US
dc.subjectBinary Segmentationen_US
dc.subjectBiomedical Engineeringen_US
dc.subjectDiagnosisen_US
dc.subjectImage Segmentationen_US
dc.subjectLearning Systemsen_US
dc.subjectMachine Learningen_US
dc.subjectMedical Image Processingen_US
dc.subjectSingle Photon Emission Computed tomographyen_US
dc.subjectEmission Computed tomographyen_US
dc.subjectMyocardial Tissueen_US
dc.subjectSegmentation Imagesen_US
dc.subjectSegmentation Modelsen_US
dc.subjectSingle Photon Emissionen_US
dc.titleSPECT Sol Ventrikül Bölütlenmesi Kullanılarak Makine Öğrenmesi Yöntemleri ile Kalbin Uzun Ekseni Çıkarımen_US
dc.title.alternativeExtraction of Heart Long Axis Based on Segmentation of SPECT Left Ventricle Using Machine Learningen_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.scopus2-s2.0-105015564451-
dc.identifier.doi10.1109/SIU66497.2025.11111775-
dc.authorscopusid57205421446-
dc.authorscopusid57195245742-
dc.authorscopusid7003521950-
dc.authorscopusid7409387247-
dc.authorscopusid7403886497-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.languageiso639-1tr-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.