Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12742
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUlu, Elif Nehir-
dc.contributor.authorDerya, Ece-
dc.contributor.authorTümer, Duygu-
dc.contributor.authorDemirel, Berkan-
dc.contributor.authorKaramanlıoğlu, Alper-
dc.date.accessioned2025-10-10T15:47:29Z-
dc.date.available2025-10-10T15:47:29Z-
dc.date.issued2026-
dc.identifier.isbn9789819698936-
dc.identifier.isbn9789819698042-
dc.identifier.isbn9789819698110-
dc.identifier.isbn9789819698905-
dc.identifier.isbn9789819512324-
dc.identifier.isbn9783032026019-
dc.identifier.isbn9783032008909-
dc.identifier.isbn9783031915802-
dc.identifier.isbn9789819698141-
dc.identifier.isbn9783031984136-
dc.identifier.issn1611-3349-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://doi.org/10.1007/978-3-032-02548-7_32-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12742-
dc.descriptionSiemens Healthineers AGen_US
dc.description.abstractWe present a practical pipeline for multilingual domain adaptation in automatic speech recognition (ASR) that combines the Whisper model with large language models (LLMs). Using Aya-23-8B, Common Voice transcripts in 22 languages are automatically classified into the Law and Healthcare domains, producing high-quality domain labels at a fraction of the manual cost. These labels drive parameter-efficient (LoRA) fine-tuning of Whisper and deliver consistent relative Word Error Rate (WER) reductions of up to 14.3% for languages that contribute at least 800 in-domain utterances. A data-volume analysis reveals a clear breakpoint: gains become reliably large once that 800-utterance threshold is crossed, while monolingual tuning still rescues performance in truly low-resource settings. The workflow therefore shifts the key success factor from expensive hand labelling to scalable data acquisition, and can be replicated in new domains with minimal human intervention. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofLecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDomain Adaptationen_US
dc.subjectLarge Language Modelen_US
dc.subjectLarge Language Modelsen_US
dc.subjectMultilingual Speech Recognitionen_US
dc.subjectAutomatic Speech Recognitionen_US
dc.subjectWhisperen_US
dc.subjectComputational Linguisticsen_US
dc.subjectData Acquisitionen_US
dc.subjectDigital Storageen_US
dc.subjectDrive Parametersen_US
dc.subjectHealthcare Domainsen_US
dc.subjectHigh Qualityen_US
dc.subjectLabelsen_US
dc.subjectClassifiedsen_US
dc.subjectSpeech Communicationen_US
dc.subjectSpeech Recognitionen_US
dc.subjectTuningen_US
dc.subjectLanguage Modelen_US
dc.titleMultilingual Domain Adaptation for Speech Recognition Using LLMsen_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.volume16029 LNAIen_US
dc.identifier.startpage381en_US
dc.identifier.endpage393en_US
dc.identifier.scopus2-s2.0-105014424443-
dc.identifier.doi10.1007/978-3-032-02548-7_32-
dc.authorscopusid60075868800-
dc.authorscopusid60075770900-
dc.authorscopusid60075868900-
dc.authorscopusid57190744256-
dc.authorscopusid57197835852-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
dc.identifier.wosqualityN/A-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

34
checked on Oct 27, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.