Please use this identifier to cite or link to this item:
                
       https://hdl.handle.net/20.500.11851/12742Full metadata record
| DC Field | Value | Language | 
|---|---|---|
| dc.contributor.author | Ulu, Elif Nehir | - | 
| dc.contributor.author | Derya, Ece | - | 
| dc.contributor.author | Tümer, Duygu | - | 
| dc.contributor.author | Demirel, Berkan | - | 
| dc.contributor.author | Karamanlıoğlu, Alper | - | 
| dc.date.accessioned | 2025-10-10T15:47:29Z | - | 
| dc.date.available | 2025-10-10T15:47:29Z | - | 
| dc.date.issued | 2026 | - | 
| dc.identifier.isbn | 9789819698936 | - | 
| dc.identifier.isbn | 9789819698042 | - | 
| dc.identifier.isbn | 9789819698110 | - | 
| dc.identifier.isbn | 9789819698905 | - | 
| dc.identifier.isbn | 9789819512324 | - | 
| dc.identifier.isbn | 9783032026019 | - | 
| dc.identifier.isbn | 9783032008909 | - | 
| dc.identifier.isbn | 9783031915802 | - | 
| dc.identifier.isbn | 9789819698141 | - | 
| dc.identifier.isbn | 9783031984136 | - | 
| dc.identifier.issn | 1611-3349 | - | 
| dc.identifier.issn | 0302-9743 | - | 
| dc.identifier.uri | https://doi.org/10.1007/978-3-032-02548-7_32 | - | 
| dc.identifier.uri | https://hdl.handle.net/20.500.11851/12742 | - | 
| dc.description | Siemens Healthineers AG | en_US | 
| dc.description.abstract | We present a practical pipeline for multilingual domain adaptation in automatic speech recognition (ASR) that combines the Whisper model with large language models (LLMs). Using Aya-23-8B, Common Voice transcripts in 22 languages are automatically classified into the Law and Healthcare domains, producing high-quality domain labels at a fraction of the manual cost. These labels drive parameter-efficient (LoRA) fine-tuning of Whisper and deliver consistent relative Word Error Rate (WER) reductions of up to 14.3% for languages that contribute at least 800 in-domain utterances. A data-volume analysis reveals a clear breakpoint: gains become reliably large once that 800-utterance threshold is crossed, while monolingual tuning still rescues performance in truly low-resource settings. The workflow therefore shifts the key success factor from expensive hand labelling to scalable data acquisition, and can be replicated in new domains with minimal human intervention. © 2025 Elsevier B.V., All rights reserved. | en_US | 
| dc.language.iso | en | en_US | 
| dc.publisher | Springer Science and Business Media Deutschland GmbH | en_US | 
| dc.relation.ispartof | Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en_US | 
| dc.rights | info:eu-repo/semantics/closedAccess | en_US | 
| dc.subject | Domain Adaptation | en_US | 
| dc.subject | Large Language Model | en_US | 
| dc.subject | Large Language Models | en_US | 
| dc.subject | Multilingual Speech Recognition | en_US | 
| dc.subject | Automatic Speech Recognition | en_US | 
| dc.subject | Whisper | en_US | 
| dc.subject | Computational Linguistics | en_US | 
| dc.subject | Data Acquisition | en_US | 
| dc.subject | Digital Storage | en_US | 
| dc.subject | Drive Parameters | en_US | 
| dc.subject | Healthcare Domains | en_US | 
| dc.subject | High Quality | en_US | 
| dc.subject | Labels | en_US | 
| dc.subject | Classifieds | en_US | 
| dc.subject | Speech Communication | en_US | 
| dc.subject | Speech Recognition | en_US | 
| dc.subject | Tuning | en_US | 
| dc.subject | Language Model | en_US | 
| dc.title | Multilingual Domain Adaptation for Speech Recognition Using LLMs | en_US | 
| dc.type | Conference Object | en_US | 
| dc.department | TOBB University of Economics and Technology | en_US | 
| dc.identifier.volume | 16029 LNAI | en_US | 
| dc.identifier.startpage | 381 | en_US | 
| dc.identifier.endpage | 393 | en_US | 
| dc.identifier.scopus | 2-s2.0-105014424443 | - | 
| dc.identifier.doi | 10.1007/978-3-032-02548-7_32 | - | 
| dc.authorscopusid | 60075868800 | - | 
| dc.authorscopusid | 60075770900 | - | 
| dc.authorscopusid | 60075868900 | - | 
| dc.authorscopusid | 57190744256 | - | 
| dc.authorscopusid | 57197835852 | - | 
| dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US | 
| dc.identifier.scopusquality | Q3 | - | 
| dc.identifier.wosquality | N/A | - | 
| item.grantfulltext | none | - | 
| item.languageiso639-1 | en | - | 
| item.openairetype | Conference Object | - | 
| item.fulltext | No Fulltext | - | 
| item.cerifentitytype | Publications | - | 
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - | 
| Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection | |
CORE Recommender
	
	Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
