Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1335
Title: Strong field enhancement of resonance modes in dielectric microcylinders
Authors: Mahariq, İbrahim
Kurt, Hamza
200103
Keywords: Spectral Element Method
Photonic Nanojets
Jets
Issue Date: 1-Apr-2016
Publisher: Optical Soc Amer
Source: Mahariq, I., & Kurt, H. (2016). Strong field enhancement of resonance modes in dielectric microcylinders. JOSA B, 33(4), 656-662.
Abstract: A loss-free compact dielectric microcylinder acting as an optical resonator is studied in the present work by means of the spectral element method. A specific whispering gallery mode (WGM) supported by the structure is constantly tracked under the same type of illumination while varying the diameter of the resonator between similar to 5 lambda and 8 lambda (lambda = wavelength of light). The parameter space of the optical resonator informs us that it is possible to have either a larger radius of microcylinder with a smaller refractive index or a smaller radius of microcylinder with a larger refractive index value. Two different scenarios are also considered in the current study in order to verify the strong field confinement; one is under Bessel beam illumination conditions and the other is the introduction of nonhomogeneity in the material forming the cylinder. Strong power enhancement up to 3 orders of magnitude is attainable with small microcylinders. While the refractive index changes from 1.50 to 2.25, the corresponding radius utilizing the same type of WGM has to be carefully captured with fine tuning. It is imperative to increase the number of significant digits from 3.9380 lambda to 2.6600939 lambda in order not to miss such huge field enhancement phenomena. Standard resonance condition for constructive interference does not give us targeted parameters. The study may pave the way toward a new technique to detect nanoscale objects below the diffraction limit and may contribute to a new ultramicroscopy technique for detecting single molecules by low-threshold microcavity lasers. Additionally there are nonlinear optics applications. (C) 2016 Optical Society of America
URI: https://www.osapublishing.org/josab/abstract.cfm?uri=josab-33-4-656
https://hdl.handle.net/20.500.11851/1335
ISSN: 0740-3224
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender

SCOPUSTM   
Citations

19
checked on Sep 23, 2022

WEB OF SCIENCETM
Citations

23
checked on Sep 24, 2022

Page view(s)

30
checked on Dec 26, 2022

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.