Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1494
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAltıntas, Resul Sercan-
dc.contributor.authorKahya, Müge-
dc.contributor.authorÜnver, Hakkı Özgür-
dc.date.accessioned2019-06-26T08:07:02Z
dc.date.available2019-06-26T08:07:02Z
dc.date.issued2016-10
dc.identifier.citationAltıntaş, R. S., Kahya, M., & Ünver, H. Ö. (2016). Modelling and optimization of energy consumption for feature based milling. The International Journal of Advanced Manufacturing Technology, 86(9-12), 3345-3363.en_US
dc.identifier.issn0268-3768
dc.identifier.urihttps://link.springer.com/article/10.1007/s00170-016-8441-7-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/1494-
dc.description.abstractEnergy consumption is increasing along with the world's population and industrialization level; thus, energy and resource efficiency in manufacturing is of vital importance. In order to increase energy and resource efficiency, the amount of consumed energy must first be accurately quantified for each manufacturing process. Milling is one of the most common machining operations. In this study, a prediction model for estimating theoretical energy consumption involved in milling of prismatic parts is presented. The prediction model relies on the STEP Application Protocol 224 features for volumetric information and material properties of prismatic parts. Verification tests exemplify how engineers can utilize the presented prediction model and approach to measuring machine tool energy consumption. Test results show that the prediction model runs with 5 % accuracy. Also, effect of cutter path for prismatic milling is investigated for certain features. Furthermore, response surface methodology is utilized in order to determine optimal milling parameters of slot feature in order to minimize energy consumption when machining AISI 304 stainless steel.en_US
dc.language.isoenen_US
dc.publisherSpringer London Ltden_US
dc.relation.ispartofInternational Journal Of Advanced Manufacturing Technologyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEnergy efficiencyen_US
dc.subjectFeature based millingen_US
dc.subjectSTEP AP224en_US
dc.subjectGreen manufacturingen_US
dc.subjectResponse surface methodologyen_US
dc.subjectFace centered composite designen_US
dc.titleModelling and optimization of energy consumption for feature based millingen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Mechanical Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Makine Mühendisliği Bölümütr_TR
dc.identifier.volume86
dc.identifier.issue9.Ara
dc.identifier.startpage3345
dc.identifier.endpage3363
dc.identifier.wosWOS:000385072400083en_US
dc.identifier.scopus2-s2.0-84957932989en_US
dc.institutionauthorÜnver, Hakkı Özgür-
dc.contributor.YOKid180394-
dc.identifier.doi10.1007/s00170-016-8441-7-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
crisitem.author.dept02.7. Department of Mechanical Engineering-
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

43
checked on Sep 23, 2022

WEB OF SCIENCETM
Citations

41
checked on Sep 24, 2022

Page view(s)

42
checked on Dec 5, 2022

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.