Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1711
Title: New Sums Identities In Weighted Catalan Triangle With The Powers Of Generalized Fibonacci And Lucas Numbers
Authors: Kılıç, Emrah
Yalçıner, Aynur
29574
Keywords: Catalan triangle
sums identites
partial binomial sum
recursions
Issue Date: Jul-2014
Publisher: Charles Babbage Research Centre
Source: Kiliç, E., & Yalçiner, A. (2014). New Sums Identities In Weighted Catalan Triangle With The Powers Of Generalized Fibonacci And Lucas Numbers. Ars Comb., 115, 391-400.
Abstract: In this paper, we consider a generalized Catalan triangle defined by k(m)/n(2n n - k) for positive integer m. Then we compute the weighted half binomial sums with the certain powers of generalized Fibonacci and Lucas numbers of the form Sigma(n)(k=0) (2n n + k) k(m)/nX(tk)(r), where X-n either generalized Fibonacci or Lucas numbers, t and r are integers for 1 <= m <= 6. After we describe a general methodology to show how to compute the sums for further values of m.
URI: https://hdl.handle.net/20.500.11851/1711
ISSN: 0381-7032
Appears in Collections:Matematik Bölümü / Department of Mathematics
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
CatalanTriangle.pdf133.37 kBAdobe PDFThumbnail
View/Open
Show full item record

CORE Recommender

WEB OF SCIENCETM
Citations

2
checked on Feb 4, 2023

Page view(s)

26
checked on Feb 6, 2023

Download(s)

10
checked on Feb 6, 2023

Google ScholarTM

Check


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.