Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1731
Title: L-Polynomials of the Curve
Authors: Özbudak, Ferruh
Saygı, Zülfükar
Keywords: Algebraic curves
L-polynomials
Rational points
Issue Date: 2015
Publisher: Springer Verlag
Source: Ozbudak, F., & Saygı, Z. L-Polynomials of the Curve yqn? y= ?xqh? ? over Fqm. Arithmetic of Finite Fields, 171.
Abstract: Let chi be a smooth, geometrically irreducible and projective curve over a finite field F-q of odd characteristic. The L-polynomial L-chi(t) of chi determines the number of rational points of chi not only over F-q but also over F-qs for any integer s >= 1. In this paper we determine L-polynomials of a class of such curves over F-q.
URI: https://doi.org/10.1007/978-3-319-16277-5_10
https://hdl.handle.net/20.500.11851/1731
ISBN: 978-3-319-16276-8
ISSN: 0302-9743
Appears in Collections:Matematik Bölümü / Department of Mathematics
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender

Page view(s)

20
checked on Dec 26, 2022

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.