Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1996
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSarıkan, Selim S.-
dc.contributor.authorÖzbayoğlu, Ahmet Murat-
dc.contributor.authorZilci, Oğuzhan-
dc.date.accessioned2019-07-10T14:42:44Z
dc.date.available2019-07-10T14:42:44Z
dc.date.issued2017
dc.identifier.citationSarikan, S. S., Ozbayoglu, A. M., & Zilci, O. (2017). Automated vehicle classification with image processing and computational intelligence. Procedia computer science, 114, 515-522.en_US
dc.identifier.issn1877-0509
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1877050917318161?via%3Dihub-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/1996-
dc.descriptionComplex Adaptive Systems Conference on Engineering Cyber Physical Systems (CAS) (2017 : Chicago, IL)
dc.description.abstractClassification of vehicles is an important part of an Intelligent Transportation System. In this study, image processing and machine learning techniques are used to classify vehicles in dedicated lanes. Images containing side view profile of vehicles are constructed using a commercially available light curtain. This capability makes the results robust to the variations in operational and environmental conditions. Time warping is applied to compensate for speed variations in traffic. Features such as windows and hollow areas are extracted to discriminate motorcycles against automobiles. The circularity and skeleton complexity values are used as features for the classifier. K-nearest neighbor and decision tree are chosen as the classifier models. The proposed method is evaluated on a public highway and promising classification results are achieved. (c) 2017 The Authors. Published by Elsevier B.V.en_US
dc.language.isoenen_US
dc.publisherELSEVIER Science BVen_US
dc.relation.ispartofProcedia Computer Scienceen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectVehicle Classificationen_US
dc.subjectComputational Intelligenceen_US
dc.subjectImage Processingen_US
dc.subjectIntelligent Transportation Systemsen_US
dc.titleAutomated Vehicle Classification with Image Processing and Computational Intelligenceen_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Computer Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümütr_TR
dc.identifier.volume114
dc.identifier.startpage515
dc.identifier.endpage522
dc.authorid0000-0001-7998-5735-
dc.identifier.wosWOS:000419234000062en_US
dc.identifier.scopus2-s2.0-85040024387en_US
dc.institutionauthorÖzbayoğlu, Ahmet Murat-
dc.contributor.YOKid142991-
dc.identifier.doi10.1016/j.procs.2017.09.022-
dc.authorwosidH-2328-2011-
dc.authorscopusid6505999525-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusquality--
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextopen-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
ozbayoglu_Automated.pdf563.93 kBAdobe PDFThumbnail
View/Open
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

14
checked on Sep 23, 2022

WEB OF SCIENCETM
Citations

13
checked on Sep 24, 2022

Page view(s)

34
checked on Dec 26, 2022

Download(s)

4
checked on Dec 26, 2022

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.