Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/2262
Title: İskeletsel kritik noktalar ile şekil tanıma
Other Titles: Shape recognition using skeletal critical points
Authors: Demirci, Muhammed Fatih
Bölük, Salih Arda
Keywords: Earth Mover's Distance Medial axis graph
Shape matching
Shape retrieval
Toprak taşıyıcı mesafesi
Orta eksen çizgesi
Şekil eşleşme
Şekil tanıma
Issue Date: 2016
Publisher: TOBB University of Economics and Technology,Graduate School of Engineering and Science
TOBB ETÜ Fen Bilimleri Enstitüsü
Source: Bölük, S. (2016). İskeletsel kritik noktalar ile şekil tanıma. Ankara: TOBB ETÜ Fen Bilimleri Enstitüsü. [Yayınlanmamış yüksek lisans tezi]
Abstract: Son yıllarda görüntü teknolojilerinde meydana gelen gelişmelerle ve internet kullanımının yaygınlaşmasıyla birlikte sanal ortamda çok sayıda resim ve görüntü bulunmaktadır. Sıklıkla büyük veri setleri halinde bulunan bu görüntüler üzerinde arama, indeksleme, gruplama gibi işlemlere ihtiyaç duyulmaktadır. Bilgisayarlı görü teknikleri sayesinde görüntülerdeki nesneler tanınmakta ve bahsedilen işlemler için görüntüler anlamlandırılabilmektedir. Bu çalışmada, orta eksen çizgeleri kullanılarak şekil tanıma alanında yeni bir yaklaşım sunulmuştur. İskeletleri çıkartılan şekillerin çizgelerinde, her bir iskelet noktasının tüm kritik noktalara olan en kısa yol uzaklığı hesaplanarak her bir şekil için çok boyutlu bir dağılım oluşturulmuştur. Önerilen şekil tanıma platformunda bu dağılımlar üzerinde taşıma tabanlı bir uzaklık fonksiyonu kullanılarak şekiller arasındaki benzerlik oranı bulunmuştur. Alınan sonuçlar daha önceden yapılmış benzer çalışmaların sonuçlarıyla karşılaştırılarak önerilen yaklaşımın başarımı gösterilmiştir. Son olarak önerilen yöntemin performansı ileri beslemeli yapay sinir ağlarıyla desteklenmiş ve sonuçlarda dikkate değer iyileşmeler olduğu görülmüştür.
In recent years, with the advances in imaging technologies and widespread use of the internet, a great number of images and video are present in the digital world. Because the number of images and video is very large, the need for searching, indexing and grouping operations is high. With the help of computer vision techniques, the images can be interpreted and their contents can be recognized for the mentioned operations. In this work, we presented a novel shape recognition framework based on medial axis graph. After extracting medial axis graph of a shape, we constructed a multi-dimensional distribution by calculating shortest path distances between each skeleton point and all of the points in the graph. Then similarity rates between these distributions is found by using a transportationbased distance function. We compared our results with results of similar works conducted in the past. Finally, the performance of the proposed method is increased by using feed forward neural network algorithm which provides a fair amount of improvement on classification results.
URI: https://hdl.handle.net/20.500.11851/2262
https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
Appears in Collections:Bilgisayar Mühendisliği Yüksek Lisans Tezleri / Computer Engineering Master Theses

Files in This Item:
File Description SizeFormat 
427888.pdf3.39 MBAdobe PDFThumbnail
View/Open
Show full item record

CORE Recommender

Page view(s)

6
checked on Dec 26, 2022

Download(s)

6
checked on Dec 26, 2022

Google ScholarTM

Check


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.