Please use this identifier to cite or link to this item:
Title: Packet Size Optimization for Lifetime Maximization in Underwater Acoustic Sensor Networks
Authors: Yıldız, Hüseyin Uğur
Güngör, Vehbi Çağrı
Tavlı, Bülent
Keywords: Integer linear programming (ILP)
network lifetime
optimum packet size (OPS)
transmission power control (TPC)
underwater acoustic sensor networks (UASNs)
Issue Date: Feb-2019
Publisher: IEEE Computer Society
Source: Yildiz, H. U., Gungor, V. C., and Tavli, B. (2018). Packet size optimization for lifetime maximization in underwater acoustic sensor networks. IEEE Transactions on Industrial Informatics, 15(2), 719-729.
Abstract: Recently, underwater acoustic sensor networks (UASNs) have been proposed to explore underwater environments for scientific, commercial, and military purposes. However, long propagation delays, high transmission losses, packet drops, and limited bandwidth in underwater propagation environments make realization of reliable and energy-efficient communication a challenging task for UASNs. To prolong the lifetime of battery-limited UASNs, two critical factors (i.e., packet size and transmission power) play vital roles. At one hand, larger packets are vulnerable to packet errors, while smaller packets are more resilient to such errors. In general, using smaller packets to avoid bit errors might be a good option. However, when small packets are used, more frames should be transmitted due to the packet fragmentation, and hence, network overhead and energy consumption increases. On the other hand, increasing transmission power reduces frame errors, but this would result in unnecessary energy consumption in the network. To this end, the packet size and transmission power should be jointly considered to improve the network lifetime. In this study, an optimization framework via an integer linear programming (ILP) has been proposed to maximize the network lifetime by joint optimization of the transmission power and packet size. In addition, a realistic link-layer energy consumption model is designed by employing the physical layer characteristics of UASNs. Extensive numerical analysis through the optimization model has been also performed to investigate the tradeoffs caused by the transmission power and packet size quantitatively. © 2005-2012 IEEE.
ISSN: 1551-3203
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender


checked on Sep 23, 2022


checked on Sep 24, 2022

Page view(s)

checked on Dec 26, 2022

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.