Please use this identifier to cite or link to this item:
Title: Partial cloaking by graded index photonic crystals
Authors: Öner, Bilgehan Barış
Can, M. G.
Kurt, Hamza
Keywords: Photonic crystals
graded photonic
Issue Date: Apr-2014
Publisher: SPIE
Source: Oner, B. B., Can, M. G., and Kurt, H. (2014, May). Partial cloaking by graded index photonic crystals. In Photonic Crystal Materials and Devices XI (Vol. 9127, p. 912708). International Society for Optics and Photonics.
Abstract: Since the first proposal of the idea of optical cloaking, huge research effort has been spent to implement hiding objects. We propose a broad band all-dielectric partial (unidirectional) cloaking device that hides arbitrary shaped objects. The cloaking structure is designed utilizing graded index (GRIN) photonic crystals. Refractive index distribution of the structure is chosen as a hyperbolic secant profile. In order to generate desired index profiles, both low and high dielectric backgrounds are chosen. The main principle of the cloaking in the study is separating the beam into two main parts while propagating through the composite device. Each part of the separated beam is strongly focused at the center of the stacked GRIN devices. Then these beams diverge and converge repeatedly without deteriorating the planar input field profile. This mechanism dramatically reduces the intensity at the center of the device. Therefore, existence of an object at the cloaked region almost does not affect wave front of the exiting beam due to this special light manipulation mechanism. In this manner, an observer cannot detect the hidden object. GRIN medium is a special type of inhomogeneous environment and light propagation is greatly affected by the presence of GRIN. Any partial cloaking solution as long as being practical and broadband in nature can be preferred. In this case, material selection and easy transferring the design to other electromagnetic spectrum regions become crucial. Therefore, the proposed idea in this work collects these desirable features. © 2014 SPIE.
ISBN: 978-162841075-4
ISSN: 0277786X
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender


checked on Sep 23, 2022

Page view(s)

checked on Dec 26, 2022

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.