Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/2787
Title: Integrated HIFU Drive System on a Chip for CMUT-Based Catheter Ablation System
Authors: Farhanieh, Omid
Sahafi, Ali
Roy, Rupak Bardhan
Ergün, Arif Şanlı
Bozkurt, Ayhan
Keywords: Capacitive micromachined ultrasound transducer (CMUT)
catheter ablation system
continuous wave high-voltage driver
high Intensity Focused Ultrasonic (HIFU)
phase locked loop
real-time HIFU thermal image
Issue Date: 2017
Publisher: Institute of Electrical and Electronics Engineers Inc.
Source: Farhanieh, O., Sahafi, A., Roy, R. B., Ergun, A. S., and Bozkurt, A. (2017). Integrated HIFU drive system on a chip for CMUT-based catheter ablation system. IEEE transactions on biomedical circuits and systems, 11(3), 534-546.
Abstract: Conventional High Intensity Focused Ultrasound (HIFU) is a therapeutic modality which is extracorporeally administered. In applications where a relatively small HIFU lesion is required, an intravascular HIFU probe can be deployed to the ablation site. In this paper, we demonstrate the design and implementation a fully integrated HIFU drive system on a chip to be placed on a 6 Fr catheter probe. An 8-element capacitive micromachined ultrasound transducer (CMUT) ring array of 2 mm diameter has been used as the ultrasound source. The driver chip is fabricated in 0.35 mu m AMS high-voltage CMOS technology and comprises eight continuous-wave (CW) high-voltage CMUT drivers (10.9 ns and 9.4 ns rise and fall times at 20 V-pp output into a 15 pF), an eight-channel digital beamformer (8-12 MHz output frequency with 11.25 degrees phase accuracy) and a phase locked loop with an integrated VCO as a tunable clock source (128-192 MHz). The chip occupies 1.85 x 1.8 mm(2) area including input and output (I/O) pads. When the transducer array is immersed in sunflower oil and driven by the IC with eight 20 Vpp CW pulses at 10 MHz, real-time thermal images of the HIFU beam indicate that the focal temperature rises by 16.8 degrees C in 11 seconds. Each HV driver consumes around 67 mW of power when driving the CMUT array at 10 MHz, which adds up to 560 m W for the whole chip. FEM based analysis reveals that the outer surface temperature of the catheter is expected to remain below the 42 degrees C tissue damage limit during therapy.
URI: https://hdl.handle.net/20.500.11851/2787
https://ieeexplore.ieee.org/document/7882666/
ISSN: 1932-4545
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender

SCOPUSTM   
Citations

12
checked on Sep 23, 2022

WEB OF SCIENCETM
Citations

17
checked on Sep 24, 2022

Page view(s)

6
checked on Dec 26, 2022

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.