Please use this identifier to cite or link to this item:
Title: Light Localization and Filtering vertical bar in Three Dimensional Photonic Structures
Authors: Hayran, Zeki
Staliunas, Kestutis
Kurt, Hamza
Keywords: Optical filtering
slow light
rainbow trapping
photonic crystal devices
all optical-networks
defect micro-cavities
Issue Date: 2017
Publisher: IEEE
Source: Hayran, Z., Staliunas, K., Kurt, H.(2017).Light Localization and Filtering vertical bar in Three Dimensional Photonic Structures.International Conference on Transparent Optical Networks-ICTON.
Abstract: Three dimensional photonic structures specifically, woodpile photonic crystals, have great potential for manipulating light propagation such as localization and filtering. Efficient harvesting of the energy of the incident photons require spatially localized waves interacting strongly with the absorbing material. Meanwhile, one can also utilize similar concept in order to implement filtering of light via defining drop channels that are linked with the main waveguide. One unique property of the woodpile photonic crystals is the complete band gap feature that may reduce the out-of-plane losses. Besides, band gap width and edges can be tuned by chirping three-dimensional woodpile photonic crystals. In the present work, we show light localization via "rainbow trapping" concept and propose a drop-out mechanism based on the enhanced interaction between a defect waveguide and defect micro-cavities. Frequency resolved light detection/absorption and filtering capabilities are important in photodetector applications, optical communication, and solar energy.
ISBN: 978-1-5386-0859-3
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender

Page view(s)

checked on Dec 26, 2022

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.