Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/3829
Title: Cohesive traction-separation relations for tearing of ductile plates with randomly distributed void nucleation sites
Authors: Andersen, R. G.
Tekoğlu, Cihan
Nielsen, K. L.
Keywords: Ductile failure
finite element method
Gurson model
micro-mechanics
size effect
Issue Date: Aug-2020
Publisher: Springer
Source: Andersen, R. G., Tekoğlu, C. and Nielsen, K. L. (2020). Cohesive traction–separation relations for tearing of ductile plates with randomly distributed void nucleation sites. International Journal of Fracture, 1-12.
Abstract: Cohesive zone traction-separation relations, and the related phenomenological parameters, for steady-state ductile plate tearing, are strongly tied to the micro-mechanics governing the void nucleation and growth process leading to localized deformation and micro-crack formation. The effects of such local variations on the damage evolution and cohesive zone parameters, respectively, are brought out in this study. A 2D plane strain model setup, first considered in Nielsen and Hutchinson (Int J Impact Eng 48:15-23 (2012)], is adopted, but here by discretely modeling a finite number of finite-size void nucleation sites distributed randomly in the plate material. It is found that the heterogeneous material conditions, resulting from the nucleation process, strongly affect the localization of damage and fracture, which influence the cohesive energy. By considering a number of realizations of the random distribution for each material configuration, it is concluded that: (i) the peak force in the cohesive traction-separation relation is, essentially, unaffected by the heterogeneity coming into play through the damage-related microstructure, while (ii) the cohesive energy decreases when either increasing the number or the size of the nucleation sites. The cohesive energy is found to be in the range of those previously reported for homogeneous materials, but a direct comparison should be made with caution. The results imply that care should be taken if the actual material configuration diverges from a homogeneous microstructure such as when considering very thin plates and for plates with a few void nucleation sites.
URI: https://hdl.handle.net/20.500.11851/3829
https://link.springer.com/article/10.1007/s10704-020-00454-2
ISSN: 0376-9429
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender

SCOPUSTM   
Citations

3
checked on Sep 23, 2022

WEB OF SCIENCETM
Citations

5
checked on Sep 24, 2022

Page view(s)

34
checked on Feb 6, 2023

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.