Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/3937
Title: Genel toplanabilme metodu ile Bernsteın-Chlodovsky tipioperatörlerin yaklaşımı
Other Titles: General summability methods in the approximation byBernstein-Chlodovsky operators
Authors: Duman, Oktay
Alemdar, Merve Ece
Keywords: Pozitif lineer operatörler
Bernstein-Chlodovsky operatörleri
Regüler toplanabilme metodu
Cesàro metodu
Agırlıklı uzay
Süreklilik modülü
Positive linear operators
Bernstein-Chlodovsky operators
Regular summability methods
the Cesàro method
Weighted spaces
Modulus of continuity
Issue Date: 2020
Publisher: TOBB ETÜ Fen Bilimleri Enstitüsü
Source: Alemdar, M. (2020).Genel toplanabilme metodu ile Bernsteın-Chlodovsky tipioperatörlerin yaklaşımı. Ankara: TOBB ETÜ Fen Bilimleri Enstitüsü. [Yayınlanmamış yüksek lisans tezi]
Abstract: Bu yüksek lisans tezinde toplanabilme teorisindeki yöntemler ile özellikle de regüler toplanabilme matrisleri kullanılarak Bernstein-Chlodovsky operatörlerinin yaklaşım özellikleri incelenmiştir ve yaklaşımdaki yakınsaklık oranları hesaplanmıştır. Bilindiği üzere Weierstrass Yaklaşım Teoremi ifade etmektedir ki, kapalı bir [a,b] aralığı üzerinde sürekli olan her fonksiyona, polinomlarla düzgün olarak yaklaşılabilir. Bu teoremin ilk orijinal versiyonu 1885 yılında Weierstrass tarafından verilmiştir. Daha sonra Bernstein, 1912 yılında tanımladığı polinomlarla bu teoremin in¸saya dayanan bir başka ispatını vermiştir. Bu yaklaşım fikri pek çok araştırmacı tarafından uygulanmış ve bu durum yeni ve etkin yaklaşım operatörlerinin tanımlanmasına imkan sağlamıştır. 1937 yılında Chlodovsky, [0;+∞) aralığında tanımlı olan fonksiyonlara yaklaşabilmek için Bernstein'nın polinomlarını genelleştirmiştir. Daha sonra bu alanda günümüze kadar literatürde pek çok çalışma yapılmıştır. Fakat bu çalışmaların hemen hemen tamamında yaklaşımın gerçeklenebilmesi için lim(bn/n)=0 n→∞ zayıflatılması amaçlanmıştır. Hatırlatmalıyız ki regüler toplabilme metotları, örneğin aritmetik ortalama yakınsaklık metodu, yakınsak dizileri koruduğu gibi klasik anlamda yakınsak olmayan pek çok diziyi de toplayabilmektedir. Dolayısıyla toplanabilme metotlarıyla elde edilecek yaklaşım teoremleri, klasik sonuçları bir adım daha ileriye götürmektedir. Literatürde pozitif lineer operatörlerin yaklaşımlarında toplanabilme metotları sıklıkla kullanılmasına rağmen Bernstein-Chlodovsky operatörlerinin yaklaşımı üzerinde henüz bu yönde bir inceleme yapılmamıştır. Bu tez çalışmasında literatürdeki bu bo¸slu˘gun doldurulması hedeflenmiştir. Tezde öncelikle klasik Bernstein-Chlodovsky operatörlerinin yaklaşım özellikleri hatırlatılacak, sonra bunların toplanabilme metotları yardımıyla bir modifikasyonu tanımlanacak ve daha sonra da bu yeni operatörün klasik yaklaşımdan daha genel ve güçlü yaklaşım özelliklerine ulaşılacaktır. Yakınsaklık oranları da hesaplanacaktır. Bunun için yaklaşımlar teorisinde önemli bir araç olan süreklilik modülü kavramı kullanılacaktır. Klasik durumu gerçeklemeyen fakat bu yeni modifikasyona göre yaklaşıma imkan sağlayan bir uygulama verilecek ve sonuçlar grafiksel olarak gözlemlenecektir. Tezin bir diğer hedefi ise elde edilen sonuçların çok değişkenli fonksiyonlara aktarılması üzerine olacaktır. Burada genel bir yaklaşım teoremi verildikten sonra özellikle iki değişkenli fonksiyonlara yaklaşım durumu grafiklerle desteklenecektir. Son olarak, tezde elde edilen sonuçlar tartışılacak ve gelecekte konuyla ilgili yapılabilecek olası araştırmalar değerlendirilecektir.
In this master thesis, the approximation properties of Bernstein-Chlodovsky operators has been investigated by using methods in summability theory, especially regular summability matrices, and rate of convergences in the approximation have been computed. As is known, the Weierstrass Approximation Theorem states that any function that is continuous on a closed interval [a,b] can be approximated uniforomly by polynomials. The first original version of this theorem was introduced by Weierstrass in 1885. Later, Bernstein gave another proof of this theorem in 1912, which was based on the construction with the polynomials. The idea of this approach has been applied by many researchers and this situation has enabled to determine new and effective approximation operators. In 1937, Chlodovsky generalized Bernstein's polynomials to approximate the functions defined in the interval [0;+∞). Later, many studies in this field have been conducted in the literature so far. However, in almost all of these studies, the following limit condition on a given sequence (bn) of positive real numbers lim(bn/n)=0 n→∞ is needed to achieve the approximation. In this thesis, it is aimed to weaken this limit condition with the help of regular summability methods. We should remind that regular summability methods, such as the method of arithmetic mean convergence, preserve the usual convergence as well as able to sum many sequences that are not the classical convergent. Therefore, the approximation theorems obtained with summability methods take the classical results one step further. Although summability methods are frequently used in the approximation by positive linear operators in the literature, no approach has yet been made on the approximation by Bernstein-Chlodovsky operators. In this thesis, it is aimed to fill this gap in the literature. In the thesis, first of all, the approximation properties of the classical Bernstein-Chlodovsky operators will be reminded, then a modification of them will be defined with the help of summability methods, and then more general and strong approximation results for this new operators will be reached. Rate of convergences in the approximation will also be calculated. For this, the concept of modulus of continuity, which is an important tool in approximation theory, will be used. An application that does not satisfy the classical situation but allows an approximation according to this new modification will be given and the results will be graphically observed. Another aim of the thesis will be on extending the obtained results to multivariable functions. After giving a general approximation theorem here, the situation of approximation to functions of two variables will be supported with graphics. Finally, the results obtained in the thesis will be discussed and possible future research on the topic will be evaluated.
URI: https://hdl.handle.net/20.500.11851/3937
Appears in Collections:Matematik Yüksek Lisans Tezleri / Mathematics Master Theses

Files in This Item:
File Description SizeFormat 
629149 (1).pdfMeryem Ece Alemdar_Tez3 MBAdobe PDFThumbnail
View/Open
Show full item record

CORE Recommender

Page view(s)

126
checked on Aug 8, 2022

Download(s)

16
checked on Aug 8, 2022

Google ScholarTM

Check


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.