Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/3973
Title: Improvement in antimicrobial properties of titanium by diethyl phosphite plasma-based surface modification
Authors: Kaleli Can, Gizem
Özgüzar, Hatice Ferda
Kahriman, Selahattin
Türkal, Miranda
Göçmen, Jülide Sedef
Yurtçu, Erkan
Mutlu, Mehmet
Keywords: Plasma polymerization
Amphoteric polymer
Titanium
Antimicrobial coating
Fungicidal activity
Antibacterial activity
Publisher: Elsevier Ltd
Source: Kaleli-Can, G., Özgüzar, H. F., Kahriman, S., Türkal, M., Göçmen, J. S., Yurtçu, E., & Mutlu, M. (2020). Improvement in antimicrobial properties of titanium by diethyl phosphite plasma-based surface modification. Materials Today Communications, 25, 101565.
Abstract: Titanium (Ti) has been commonly used as a biomaterial for dental applications. However, they have struggled with the formation of polymicrobial infections leading to peri-implantitis. In this research, antimicrobial activity of titanium modified via diethyl phosphite (DEP) plasma onto Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans), the two most frequently encountered pathogens in peri-implantitis, were investigated. Surface modification with DEP was achieved with plasma polymerization technique in a low-pressure/radio-frequency plasma using 75 W of plasma power and 10 min of exposure time under 0.15 mbar. Hydrophilicity, surface energy and roughness of Ti surface was increased and anionic Ti surface became amphoteric after surface modification according to physical and chemical examinations. This process significantly enhanced the antimicrobial efficiency of Ti towards S. aureus and C. albicans cells compared to control groups via contact killing. Moreover, DEP coating shown excellent compatibility with 93 % of L929 fibroblast cell viability. These findings revealed that amphoteric plasma polymer prepared from DEP offers promising solution for preventing biofilm formation on Ti.
URI: https://hdl.handle.net/20.500.11851/3973
https://doi.org/10.1016/j.mtcomm.2020.101565
ISSN: 2352-4928
Appears in Collections:Biyomedikal Mühendisliği Bölümü / Department of Biomedical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Temel Tıp Bilimleri Bölümü / Department of Basic Medical Sciences
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Apr 20, 2024

WEB OF SCIENCETM
Citations

7
checked on Jan 20, 2024

Page view(s)

102
checked on Apr 22, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.