Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/4102
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKnoll, Wolfgang-
dc.contributor.authorAzzaroni, Omar-
dc.contributor.authorDuran, Hatice-
dc.contributor.authorKunze-Liebhaeuser, Julia-
dc.contributor.authorLau, King Hang Aaron-
dc.contributor.authorReimhult, Erik-
dc.contributor.authorYameen, Basit-
dc.date.accessioned2021-01-27T13:24:31Z-
dc.date.available2021-01-27T13:24:31Z-
dc.date.issued2020-05
dc.identifier.citationKnoll, W., Azzaroni, O., Duran, H., Kunze-Liebhäuser, J., Lau, K. H. A., Reimhult, E., and Yameen, B. (2020). Nanoporous thin films in optical waveguide spectroscopy for chemical analytics. Analytical and bioanalytical chemistry, 412(14), 3299-3315.en_US
dc.identifier.issn1618-2650
dc.identifier.issn1618-2642
dc.identifier.urihttps://hdl.handle.net/20.500.11851/4102-
dc.identifier.urihttps://link.springer.com/article/10.1007%2Fs00216-020-02452-8-
dc.description.abstractSpectroscopy with planar optical waveguides is still an active field of research for the quantitative analysis of various supramolecular surface architectures and processes, and for applications in integrated optical chip communication, direct chemical sensing, etc. In this contribution, we summarize some recent development in optical waveguide spectroscopy using nanoporous thin films as the planar substrates that can guide the light just as well as bulk thin films. This is because the nanoporosity is at a spacial length-scale that is far below the wavelength of the guided light; hence, it does not lead to an enhanced scattering or additional losses of the optical guided modes. The pores have mainly two effects: they generate an enormous inner surface (up to a factor of 100 higher than the mere geometric dimensions of the planar substrate) and they allow for the exchange of material and charges between the two sides of the solid thin film. We demonstrate this for several different scenarios including anodized aluminum oxide layers for the ultrasensitive determination of the refractive index of fluids, or the label-free detection of small analytes binding from the pore inner volume to receptors immobilized on the pore surface. Using a thin film of Ti metal for the anodization results in a nanotube array offering an even further enhanced inner surface and the possibility to apply electrical potentials via the resulting TiO2 semiconducting waveguide structure. Nanoporous substrates fabricated from SiNx thin films by colloid lithography, or made from SiO2 by e-beam lithography, will be presented as examples where the porosity is used to allow for the passage of ions in the case of tethered lipid bilayer membranes fused on top of the light-guiding layer, or the transport of protons through membranes used in fuel cell applications. The final example that we present concerns the replication of the nanopore structure by polymers in a process that leads to a nanorod array that is equally well suited to guide the light as the mold; however, it opens a totally new field for integrated optics formats for direct chemical and biomedical sensing with an extension to even molecularly imprinted structures. Graphical abstracten_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofAnalytical and Bioanalytical Chemistryen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAnodizationen_US
dc.subjectColloid lithographyen_US
dc.subjecte-Beam lithographyen_US
dc.subjectNanoporous thin filmsen_US
dc.subjectOptical waveguide spectroscopyen_US
dc.subjectChemical and biosensingen_US
dc.subjectPolymer nanorod arrayen_US
dc.titleNanoporous thin films in optical waveguide spectroscopy for chemical analyticsen_US
dc.typeReviewen_US
dc.departmentFaculties, Faculty of Engineering, Department of Material Science and Nanotechnology Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümütr_TR
dc.identifier.volume412
dc.identifier.issue14
dc.identifier.startpage3299
dc.identifier.endpage3315
dc.authorid0000-0001-6203-3906-
dc.identifier.wosWOS:000516956200001en_US
dc.identifier.scopus2-s2.0-85080942422en_US
dc.institutionauthorDuran, Hatice-
dc.identifier.pmid32107572en_US
dc.identifier.doi10.1007/s00216-020-02452-8-
dc.relation.publicationcategoryDiğeren_US
dc.identifier.scopusqualityQ1-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeReview-
item.grantfulltextnone-
crisitem.author.dept02.6. Department of Material Science and Nanotechnology Engineering-
Appears in Collections:Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü / Department of Material Science & Nanotechnology Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Apr 20, 2024

WEB OF SCIENCETM
Citations

8
checked on Apr 20, 2024

Page view(s)

90
checked on Apr 22, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.