Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/4321
Title: LHeC and eRHIC
Authors: Litvinenko, V. N.
Bai, M.
Beebe-Wang, J.
Ben-Zvi, I.
Blaskiewicz, M.
Burrill, A.
The ATLAS Collaboration
Sultansoy, Saleh
Keywords: [No Keywords]
Issue Date: 2009
Publisher: European Physical Society Europhysics Conference on High Energy Physics, EPS-HEP 2009
Source: 16 July 2009 through 22 July 2009, Krakow, , 101851, 101851
Abstract: This paper is focused on possible designs and predicted performances of two proposed high-energy, high-luminosity electron-hadron colliders: eRHIC at Brookhaven National Laboratory (BNL, Upton, NY, USA) and LHeC at Organisation Européenne pour la Recherche Nucléaire (CERN, Geneve, Switzerland). The Relativistic Heavy Ion Collider (RHIC, BNL) and the Large Hadron Collider (LHC, CERN) are designed as versatile colliders. RHIC is colliding various species of hadrons staring from polarized protons to un-polarized heavy ions (such as fully stripped Au (gold) ions) in various combinations: polarized p-p, d-Au, Cu-Cu, Au-Au. Maximum energy in RHIC is 250 GeV (per beam) for polarized protons and 100 GeV/n for heavy ions. There is planed expansion of the variety of species to include polarized He3 and un-polarized fully stripped U (uranium). LHeC is designed to collide both un-polarized protons with energy up to 7 TeV per beam and fully stripped Pb (lead) ions with energy up to 3 TeV/n. Both eRHIC and LHeC plan to add polarized electrons (or/and positrons) to the list of colliding species in these versatile hadron colliders. In eRHIC 10-20 GeV electrons would collide with hadrons circulating in RHIC. In LHeC 50-150 GeV polarized leptons will collided with LHC's hadron beams. Both colliders plan to operate in electron-proton (in RHIC case protons are polarized as well) and electron-ion collider modes. eRHIC and LHeC colliders are complimentary both in the energy reach and in their physics goals. I will discuss in this paper possible choices of the accelerator technology for the electron part of the collider for both eRHIC and LHeC, and will present predicted performance for the colliders. In addition, possible staging scenarios for these colliders will be discussed. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution- NonCommercial-ShareAlike Licence.
URI: https://hdl.handle.net/20.500.11851/4321
ISSN: 1824-8039
Appears in Collections:Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü / Department of Material Science & Nanotechnology Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection

Show full item record

CORE Recommender

Page view(s)

24
checked on Dec 26, 2022

Google ScholarTM

Check


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.