Please use this identifier to cite or link to this item:
Title: A novel intermittency distribution based transition model for low-re number airfoils
Authors: Başkır, M. Bahar
Türkşen, İsmail Burhan
Issue Date: 2013
Publisher: American Institute of Aeronautics and Astronautics Inc.
Source: 31st AIAA Applied Aerodynamics Conference, 24 June 2013 through 27 June 2013, San Diego, CA, 99262
Abstract: A new correlation based transition model is proposed using a novel intermittency distribution function that relies on local information. The intermittency behavior of the transitional flows is reflected into computations by multiplying the production term of the Spalart-Allmaras turbulence model with the new intermittency factor. In this way, the model is in a sense similar to an algebraic model by using only an intermittency function rather than an intermittency transport equation, yet it carries transport equation character by means of the one-equation turbulence transport equation. Therefore, the present formulation being a local model yet bringing in the correlation data achieves a similar effect by using two less equations than similar transport equation based transition models like Menter's model. Validation of the new model with known flat plate test data of Schubauer & Klebanoff and Savill shows quite good agreement with the experiment. Model was also tested against some moderately high Reynolds number airfoil cases and some low Reynolds number airfoil cases with very promising results. The results imply that the new model may become a viable alternative for the higher order methods that is especially attractive in the design environment.
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection

Show full item record

CORE Recommender


checked on Sep 23, 2022

Page view(s)

checked on Dec 26, 2022

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.