Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6003
Title: The role of intermetallic particles on mode I crack propagation mechanisms in metal plates
Authors: Tekoğlu, C.
Çelik, Ş.
Duran, H.
Efe, M.
Baier-Stegmaier, S.
Nielsen, K. L.
Keywords: Ductile fracture
Intermetallic particles
Mode I crack propagation
Scanning Electron Microscopy
Shear band
Issue Date: 2021
Publisher: Elsevier Ltd
Abstract: In metal plates, the crack propagation mechanism sets the amount of the plastic deformation before failure: a slanted or a cup–cone crack typically yields limited plate thinning within the fracture process zone, while large deformation precedes cup–cup crack propagation. The present work investigates the effect of intermetallic particles on the propagation mechanisms and the associated fracture surface morphologies when tearing Al 1050 plates under far-field mode I loading. Both single edge notched and double edge notched tension specimens, with thicknesses ranging from 0.5 to 5 mm, were tested. The chemical compositions of intermetallic particles were determined by performing energy dispersive X-ray measurements, and their morphological features were characterized by Scanning Electron Microscopy (SEM). Likewise, SEM images were taken to display the fracture surfaces, and the details of the surface morphology were visualized in three dimensions by using X-ray Tomography scanning. The experimental results indicate that an increase in the volume fraction, size, and aspect ratio of the intermetallic particles all promote slanted/cup–cone cracks, while a low amount of small, circular particles leads to cup–cup cracks. Furthermore, two-dimensional finite element simulations for mode I crack propagation support the experimental findings. © 2021 Elsevier Ltd
URI: https://doi.org/10.1016/j.engfracmech.2021.107901
https://hdl.handle.net/20.500.11851/6003
ISSN: 0013-7944
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü / Department of Material Science & Nanotechnology Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender

WEB OF SCIENCETM
Citations

1
checked on Feb 4, 2023

Page view(s)

26
checked on Feb 6, 2023

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.