Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6224
Title: Alternating Sums Of The Powers Of Fibonacci And Lucas Numbers
Authors: Kılıç, Emrah
Ömür, Neşe
Ulutaş, Yücel Türker
Keywords: Fibonacci and Lucas numbers
alternating sums
Binet formulas
Issue Date: 2011
Publisher: Univ Miskolc Inst Math
Abstract: We shall consider alternating Melham's sums for Fibonacci and Lucas numbers of the form Sigma(n)(k=1) (-1)(k) F-2k+delta(2m+epsilon) and Sigma(n)(k=1) (-1)(k) L-2k+delta(2m+epsilon), where epsilon, delta is an element of {0, 1}.
URI: https://doi.org/10.18514/MMN.2011.280
https://hdl.handle.net/20.500.11851/6224
ISSN: 1787-2405
Appears in Collections:Matematik Bölümü / Department of Mathematics
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender

SCOPUSTM   
Citations

9
checked on Sep 23, 2022

WEB OF SCIENCETM
Citations

10
checked on Sep 24, 2022

Page view(s)

24
checked on Dec 5, 2022

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.