Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6278
Full metadata record
DC FieldValueLanguage
dc.contributor.authorErgun, A. Sanli-
dc.date.accessioned2021-09-11T15:35:36Z-
dc.date.available2021-09-11T15:35:36Z-
dc.date.issued2011en_US
dc.identifier.issn0041-624X-
dc.identifier.issn1874-9968-
dc.identifier.urihttps://doi.org/10.1016/j.ultras.2011.03.006-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6278-
dc.description.abstractFocused ultrasound therapy relies on acoustic power absorption by tissue. The stronger the absorption the higher the temperature increase is. However, strong acoustic absorption also means faster attenuation and limited penetration depth. Hence, there is a trade-off between heat generation efficacy and penetration depth. In this paper, we formulated the acoustic power absorption as a function of frequency and attenuation coefficient, and defined two figures of merit to measure the power absorption: spatial peak of the acoustic power absorption density, and the acoustic power absorbed within the focal area. Then, we derived "rule of thumb'' expressions for the optimum frequencies that maximized these figures of merit given the target depth and homogeneous tissue type. We also formulated a method to calculate the optimum frequency for inhomogeneous tissue given the tissue composition for situations where the tissue structure can be assumed to be made of parallel layers of homogeneous tissue. We checked the validity of the rules using linear acoustic field simulations. For a one-dimensional array of 4 cm acoustic aperture, and for a two-dimensional array of 4 x 4 cm(2) acoustic aperture, we found that the power absorbed within the focal area is maximized at 0.86 MHz, and 0.79 MHz, respectively, when the target depth is 4 cm in muscle tissue. The rules on the other hand predicted the optimum frequencies for acoustic power absorption as 0.9 MHz and 0.86 MHz, respectively for the 1D and 2D array case, which are within 6% and 9% of the field simulation results. Because radiation force generated by an acoustic wave in a lossy propagation medium is approximately proportional to the acoustic power absorption, these rules can be used to maximize acoustic radiation force generated in tissue as well. (C) 2011 Elsevier B.V. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofUltrasonicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHigh intensity focused ultrasounden_US
dc.subjectHIFUen_US
dc.subjectFUSen_US
dc.subjectAcoustic radiation forceen_US
dc.subjectFUS frequency optimizationen_US
dc.titleAnalytical and numerical calculations of optimum design frequency for focused ultrasound therapy and acoustic radiation forceen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume51en_US
dc.identifier.issue7en_US
dc.identifier.startpage786en_US
dc.identifier.endpage794en_US
dc.identifier.wosWOS:000291199600002en_US
dc.identifier.scopus2-s2.0-79957986857en_US
dc.institutionauthorSanlı Ergün, Arif-
dc.identifier.pmid21459399en_US
dc.identifier.doi10.1016/j.ultras.2011.03.006-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

12
checked on Apr 20, 2024

WEB OF SCIENCETM
Citations

9
checked on Apr 13, 2024

Page view(s)

12
checked on Apr 22, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.