Please use this identifier to cite or link to this item:
Title: Application and Implementation of Incorporating Local Boundary Conditions into Nonlocal Problems
Authors: Aksoylu, Burak
Beyer, Horst Reinhard
Çeliker, Fatih
Keywords: Boundary conditions
Galerkin projection method
nonlocal operator
nonlocal wave equation
operator theory
Issue Date: 2017
Publisher: Taylor & Francis Inc
Abstract: We study nonlocal equations from the area of peridynamics, an instance of nonlocal wave equation, and nonlocal diffusion on bounded domains whose governing equations contain a convolution operator based on integrals. We generalize the notion of convolution to accommodate local boundary conditions. On a bounded domain, the classical operator with local boundary conditions has a purely discrete spectrum, and hence, provides a Hilbert basis. We define an abstract convolution operator using this Hilbert basis, thereby automatically satisfying local boundary conditions. The main goal in this paper is twofold: apply the concept of abstract convolution operator to nonlocal problems and carry out a numerical study of the resulting operators. We study the corresponding initial value problems with prominent boundary conditions such as periodic, antiperiodic, Neumann, and Dirichlet. To connect to the standard convolution, we give an integral representation of the abstract convolution operator. For discretization, we use a weak formulation based on a Galerkin projection and use piecewise polynomials on each element which allows discontinuities of the approximate solution at the element borders. We study convergence order of solutions with respect to polynomial order and observe optimal convergence. We depict the solutions for each boundary condition.
ISSN: 0163-0563
Appears in Collections:Matematik Bölümü / Department of Mathematics
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender


checked on Sep 23, 2022


checked on Sep 24, 2022

Page view(s)

checked on Dec 26, 2022

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.