Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6426
Title: Compressive sensing-based robust off-the-grid stretch processing
Authors: İlhan, İhsan
Gürbüz, Ali Cafer
Arıkan, Orhan
Keywords: [No Keywords]
Issue Date: 2017
Publisher: Inst Engineering Technology-Iet
Abstract: Classical stretch processing (SP) obtains high range resolution by compressing large bandwidth signals with narrowband receivers using lower rate analogue-to-digital converters. SP achieves the resolution of the large bandwidth signal by focusing into a limited range window, and by deramping in the analogue domain. SP offers moderate data rate for signal processing for high bandwidth waveforms. Furthermore, if the scene in the examined window is sparse, compressive sensing (CS)-based techniques have the potential to further decrease the required number of measurements. However, CS-based reconstructions are highly affected by model mismatches such as targets that are off-the-grid. This study proposes a sparsity-based iterative parameter perturbation technique for SP that is robust to targets off-the-grid in range or Doppler. The error between reconstructed and actual scenes is measured using Earth mover's distance metric. Performance analyses of the proposed technique are compared with classical CS and SP techniques in terms of data rate, resolution and signal-to-noise ratio. It is shown through simulations that the proposed technique offers robust and high-resolution reconstructions for the same data rate compared with both classical SP- and CS-based techniques.
URI: https://doi.org/10.1049/iet-rsn.2017.0133
https://hdl.handle.net/20.500.11851/6426
ISSN: 1751-8784
1751-8792
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender

SCOPUSTM   
Citations

2
checked on Sep 23, 2022

WEB OF SCIENCETM
Citations

1
checked on Sep 24, 2022

Page view(s)

4
checked on Dec 26, 2022

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.