Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6722
Title: Finite element simulations of microstructure evolution in stress-induced martensitic transformations
Authors: Özsoy, İstemi Barış
Babacan, Nazım
Keywords: Martensitic phase transformation
Shape memory alloy
Finite elements
Microstructure
Issue Date: 2016
Publisher: Pergamon-Elsevier Science Ltd
Abstract: Microstructure evolution in single crystal and polycrystal shape memory alloys under uniaxial tension and compression is investigated using the finite element method. To determine stress-strain diagrams and evolution of martensitic microstructure during external loading, a micromechanics based thermo-mechanical material model is used. The results reveal the significant difference between the local and global material behavior when defects are present. It is shown that defects act as nucleation sites and result in transformation localization, which in turn causes a sudden drop in the stress-strain diagram followed by a stress plateau. Moreover, it is found that some regions undergo reverse transformation although the elastic moduli of the phases are equal and the loading is monotonic. Increase in athermal friction, which is the resistance to interface propagation, is found to delay the phase transformation and different magnitudes of hysteresis are obtained at different friction values. The model predicts the tension-compression asymmetry observed in shape memory alloys. The simulation results are in qualitative agreement with several experimental studies. (C) 2015 Elsevier Ltd. All rights reserved.
URI: https://doi.org/10.1016/j.ijsolstr.2015.12.009
https://hdl.handle.net/20.500.11851/6722
ISSN: 0020-7683
1879-2146
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender

SCOPUSTM   
Citations

6
checked on Sep 23, 2022

WEB OF SCIENCETM
Citations

6
checked on Sep 24, 2022

Page view(s)

14
checked on Feb 6, 2023

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.