Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6744
Title: Fractional Fuzzy Adaptive Sliding-Mode Control of a 2-DOF Direct-Drive Robot Arm
Authors: Efe, Mehmet Önder
Keywords: Adaptive fuzzy control
fractional order control
sliding mode control
Issue Date: 2008
Publisher: IEEE-Inst Electrical Electronics Engineers Inc
Abstract: This paper presents a novel parameter adjustment scheme to improve the robustness of fuzzy sliding-mode control achieved by the use of an adaptive neuro-fuzzy inference system (ANFIS) architecture. The proposed scheme utilizes fractional-order integration in the parameter tuning stage. The controller parameters are tuned such that the system under control is driven toward the sliding regime in the traditional sense. After a comparison with the classical integer-order counterpart, it is seen that the control system with the proposed adaptation scheme displays better tracking performance, and a very high degree of robustness and insensitivity to disturbances are observed. The claims are justified through some simulations utilizing the dynamic model of a 2-DOF direct-drive robot arm. Overall, the contribution of this paper is to demonstrate that the response of the system under control is significantly better for the fractional-order integration exploited in the parameter adaptation stage than that for the classical integer-order integration.
URI: https://doi.org/10.1109/TSMCB.2008.928227
https://hdl.handle.net/20.500.11851/6744
ISSN: 1083-4419
1941-0492
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender

SCOPUSTM   
Citations

178
checked on Sep 23, 2022

WEB OF SCIENCETM
Citations

155
checked on Sep 24, 2022

Page view(s)

10
checked on Feb 6, 2023

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.